skip to main content
research-article

N-symmetry direction field design

Published:08 May 2008Publication History
Skip Abstract Section

Abstract

Many algorithms in computer graphics and geometry processing use two orthogonal smooth direction fields (unit tangent vector fields) defined over a surface. For instance, these direction fields are used in texture synthesis, in geometry processing or in nonphotorealistic rendering to distribute and orient elements on the surface. Such direction fields can be designed in fundamentally different ways, according to the symmetry requested: inverting a direction or swapping two directions might be allowed or not.

Despite the advances realized in the last few years in the domain of geometry processing, a unified formalism is still lacking for the mathematical object that characterizes these generalized direction fields. As a consequence, existing direction field design algorithms are limited to using nonoptimum local relaxation procedures.

In this article, we formalize N-symmetry direction fields, a generalization of classical direction fields. We give a new definition of their singularities to explain how they relate to the topology of the surface. Specifically, we provide an accessible demonstration of the Poincaré-Hopf theorem in the case of N-symmetry direction fields on 2-manifolds. Based on this theorem, we explain how to control the topology of N-symmetry direction fields on meshes. We demonstrate the validity and robustness of this formalism by deriving a highly efficient algorithm to design a smooth field interpolating user-defined singularities and directions.

References

  1. Alliez, P., Cohen-Steiner, D., Devillers, O., Levy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. ACM Trans. Graph. (SIGGRAPH'03) 22, 3, 485--493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Dichler, J.-M., Maritaud, K., Levy, B., and Chazanfarpour, D. 2002. Texture particles. Comput. Graph. For. 21, 3.Google ScholarGoogle Scholar
  3. Fisher, M., Schroder, P., Desbrun, M., and Hoppe, H. 2007. Design of tangent vector fields. ACM Trans. Graph. (SIGGRAPH'07). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Gortler, S., Grzeszczuk, R., Szeliski, R., and Cohen, M.-F. 1996. The lumigraph. In Proceedings of ACM SIGGRAPH. 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Gu, X. and Yau, S.-T. 2003. Global conformal surface parameterization. In Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. 127--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Hertzmann, A. and Zorin, D. 2000. Illustrating smooth surfaces. In Proceedings of ACM SIGGRAPH. 517--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Levy, B. 2005. Numerical methods for digital geometry processing. In Israel Korea Bi-National Conference.Google ScholarGoogle Scholar
  8. Li, W.-C., Vallet, B., Ray, N., and Levy, B. 2006. Representing higher-order singularities in vector fields on piecewise linear surfaces. IEEE Trans. Visualiz. Comput. Graph. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Marinov, M. and Kobbelt, L. 2004. Direct anisotropic quad-dominant remeshing. In Proceedings of Pacific Graphics. 207--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ni, X., Garland, M., and Hart, J. C. 2004. Fair morse functions for extracting the topological structure of a surface mesh. ACM Trans. Graph. (SIGGRAPH'04) 23, 3, 613--622. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ohtake, Y., Horikawa, M., and Belyaev, A. 2001. Adaptive smoothing tangential direction fields on polygonal surfaces. In Proceedings of Pacific Graphics. 189. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Palacios, J. and Zhang, E. 2007. Rotational symetry field design on surfaces. ACM Trans. Graph. (SIGGRAPH'07). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Polthier, K. and Preuss, E. 2002. Identifying vector fields singularities using a discrete hodge decomposition. In Visualization and Mathematics III, H. Hege and K. Polthier, Eds. Springer Verlag, 113--134.Google ScholarGoogle Scholar
  14. Praun, E., Finkelstein, A., and Hoppe, H. 2000. Lapped textures. In Proceedings of ACM SIGGRAPH. 465--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Ray, N., Li, W. C., Levy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4, 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Tong, Y., Lombeyda, S., Hirani, A., and Desbrun, M. 2003. Discrete multiscale vector field decomposition. ACM Trans. Graph. (SIGGRAPH'03) 22, 3, 445--452. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Tricoche, X., Scheuermann, G., and Hagen, H. 2003. Topology simplification of symmetric, second-order 2D tensor fields. In Hierarchical and Geometrical Methods in Scientific Visualization, Farin, G., Hamann, B., and Haqen, H., Eds. Springer.Google ScholarGoogle Scholar
  18. Turk, G. 2001. Texture synthesis on surfaces. In Proceedings of ACM SIGGRAPH. 347--354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Wang, K., Weiwei, Tong, Y., Desbrun, M., and Schrder, P. 2006. Edge subdivision schemes and the construction of smooth vector fields. ACM Trans. Graph. (SIGGRAPH'06). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Wei, L.-Y. and Levoy, M. 2001. Texture synthesis over arbitrary manifold surfaces. In Proceedings of ACM SIGGRAPH. 355--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Zelinka, S. and Garland, M. 2004. Jump map-based interactive texture synthesis. ACM Trans. Graph. 23, 4, 930--962. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Zhang, E., Hays, J., and Turk, G. 2005. Interactive design and visualization of tensor fields on surfaces. Tech. rep., Oregon State University.Google ScholarGoogle Scholar
  23. Zhang, E., Mischaikow, K., and Turk, G. 2006. Vector field design on surfaces. ACM Trans. Graph. 25, 4, 1294--1326. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. N-symmetry direction field design

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Graphics
                ACM Transactions on Graphics  Volume 27, Issue 2
                April 2008
                54 pages
                ISSN:0730-0301
                EISSN:1557-7368
                DOI:10.1145/1356682
                Issue’s Table of Contents

                Copyright © 2008 ACM

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 8 May 2008
                • Accepted: 1 February 2008
                • Revised: 1 October 2007
                • Received: 1 May 2007
                Published in tog Volume 27, Issue 2

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article
                • Research
                • Refereed

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader
              About Cookies On This Site

              We use cookies to ensure that we give you the best experience on our website.

              Learn more

              Got it!