10.1145/143242.143284acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article
Free Access

The elementary constant problem

Published:01 August 1992Publication History
First page image

References

  1. J. A. Abbott, On the factorization of polynomials over algebraic fields, Bath computer science technical report 89-27Google ScholarGoogle Scholar
  2. A. Baker, Transcendental Number Theory, Cambridge University Press, 1975Google ScholarGoogle Scholar
  3. R. Bianconi, Some results in the model theory of analytic functions, Ph.D. thesis, Oxford, 1990.Google ScholarGoogle Scholar
  4. J. Bochnak, M. Coste and M. F. Roy, Geometrie Algebrique Reelle, Ergebnisse vol 12, Springer-Verlag, 1987.Google ScholarGoogle Scholar
  5. B. F. Caviness and M. J. Prelle, A note on algebraic independence of logarithmic and exponential constants, SIGSAM Bulletin, vol 12, no 2, pp 18-20, 1978 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M Coste and M.F. Roy, Thom's lemma, the Coding of real algebraic numbers and the computation of the topology of semi-algebraic sets, J. Symbolic Computation, 5, 121-129, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. F. Roy and A. Szpirglas, Complexity of the computation on real algebraic numbers, 1988Google ScholarGoogle Scholar
  8. J. H. Davenport, Computer algebra for cylindric algebraic decomposition, TRITA-NA-8511, NADA, KTH, Stockholm 1985.Google ScholarGoogle Scholar
  9. B. I. Dahn, Noye on Exponential Logarithmic Terms, Fundamenta Mathematicae, vol 127, pp 45-50, 1896Google ScholarGoogle ScholarCross RefCross Ref
  10. P. Gianni, B. Trager, G. Zacharias, Groebner Bases and Primary Decomposition of Polynomial Ideals, Journal of Symbolic Computation 1988, 6, pp 149-167 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. G.H. Hardy, Orders of Infinity, Cambridge 1910Google ScholarGoogle Scholar
  12. S. Lung, introduction to Transcendental Numbers, Addison-Wesley, 1966Google ScholarGoogle Scholar
  13. A. Macintyre, Schanuel's Conjecture and Free Exponential Rings, preprint, Oxford 1991Google ScholarGoogle Scholar
  14. D. Richardson, Some undecidable problems involving elementary functions of a real variable, J. Symb. Logic, v 33, no 4, pp 514-520, 1968Google ScholarGoogle Scholar
  15. D. Richardson, Solution of the identity problem for integral exponential functions, Zeitschr. F. math. Logik, Bd 15, s. 333-340, 1969Google ScholarGoogle Scholar
  16. D. Richardson, Roots of real exponential functions, Bull London Math Soc (2), 28, pp 46-56, 1983Google ScholarGoogle ScholarCross RefCross Ref
  17. D. Richardson, Finding roots of equations involving solutions of first order algebraic differential equations, pp 427-440 in Effective Methods in Algebraic Geometry, (Teo Mora and Carlo Traverso Eds), Birkhauser 1991Google ScholarGoogle Scholar
  18. D.Richardson, Wu's method and the Khovanskii finiteness theorem, Journal of Symbolic Computation, 1991, 12, pp 127-141 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. Richardson, Towards computing non algebraic cylindrical decompositions, ISSAC 91,247-255 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. D. Richardson, Computing the topology of a bounded non-algebraic curve in the plane, submitted to JSC Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. F. Roy , Computation of the topology of a real curve, Proceedings of the conference on computational geometry and topology, Sevilla 1987.Google ScholarGoogle Scholar
  22. B. Salvy, Asymptotique Automatique et Fonctions Generatrices, Thesis, Ecole Polytechnique Science et Vie Micro no 71, Avril 1990Google ScholarGoogle Scholar
  23. J. Shackell, Growth estimates for exp-log functions, preprint Institute of Mathematics, University of Kent at Canterbury, 1990.Google ScholarGoogle Scholar
  24. J. Shackell, A Differential Equations Approach to Functional Equivalence, Proceedings of ISSAC89, Portland Oregon, pp 3-7.Google ScholarGoogle Scholar
  25. J. Shackell, Limits of Liouvillian Functions, preprint 1991Google ScholarGoogle Scholar
  26. I. N. Stewart and D. O. Tall, Algebraic Number Theory, Chapman and Hall, 1979Google ScholarGoogle ScholarCross RefCross Ref
  27. L. van den Dries, On the elementary theory of restricted elementary functions, J. Symb. Logic 53, 796- 808, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  28. N.N. Vorobjov, Deciding consistency of systems of polynomial in exponent inequalities in subexponential time, Proceedings of MEGA 90, 1990.Google ScholarGoogle Scholar
  29. A.J. Wilkie, Some model completeness results for expansions of the ordered field of real numbers by Pfaffian functions, preprint, Mathematics Institute, Oxford.Google ScholarGoogle Scholar

Index Terms

  1. The elementary constant problem

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        ISSAC '92: Papers from the international symposium on Symbolic and algebraic computation
        August 1992
        406 pages
        ISBN:0897914899
        DOI:10.1145/143242

        Copyright © 1992 ACM

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 August 1992

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

        Acceptance Rates

        Overall Acceptance Rate350of728submissions,48%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader
      About Cookies On This Site

      We use cookies to ensure that we give you the best experience on our website.

      Learn more

      Got it!