skip to main content
research-article

Edge-avoiding wavelets and their applications

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

We propose a new family of second-generation wavelets constructed using a robust data-prediction lifting scheme. The support of these new wavelets is constructed based on the edge content of the image and avoids having pixels from both sides of an edge. Multi-resolution analysis, based on these new edge-avoiding wavelets, shows a better decorrelation of the data compared to common linear translation-invariant multi-resolution analyses. The reduced inter-scale correlation allows us to avoid halo artifacts in band-independent multi-scale processing without taking any special precautions. We thus achieve nonlinear data-dependent multi-scale edge-preserving image filtering and processing at computation times which are linear in the number of image pixels. The new wavelets encode, in their shape, the smoothness information of the image at every scale. We use this to derive a new edge-aware interpolation scheme that achieves results, previously computed by solving an inhomogeneous Laplace equation, through an explicit computation. We thus avoid the difficulties in solving large and poorly-conditioned systems of equations.

We demonstrate the effectiveness of the new wavelet basis for various computational photography applications such as multi-scale dynamic-range compression, edge-preserving smoothing and detail enhancement, and image colorization.

Skip Supplemental Material Section

Supplemental Material

tps023_09.mp4

References

  1. An, X., and Pellacini, F. 2008. Appprop: all-pairs appearancespace edit propagation. In In Proc. ACM SIGGRAPH, ACM, New York, NY, USA, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Barash, D., and Comaniciu, D. 2004. A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Image and Video Computing 22, 73--81.Google ScholarGoogle ScholarCross RefCross Ref
  3. Black, M. J., Sapiro, G., Marimont, D. H., and Heeger, D. 1998. Robust anisotropic diffusion. Image Processing, IEEE Transactions on 7, 3, 421--432. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Burrus, C., Gopinath, R., and Guo, H. 1998. Introduction to Wavelets and Wavelet Transforms, A Primer. Prentice Hall, N.J.Google ScholarGoogle Scholar
  5. Burt, P. J., and Adelson, E. H. 1983. The laplacian pyramid as a compact image code. IEEE Transactions on Communications COM-31, 4, 532--540.Google ScholarGoogle ScholarCross RefCross Ref
  6. Burt, P. J. 1981. Fast filter transforms for image processing. Proc. SPIE 2825, vol. 16, 396--408.Google ScholarGoogle ScholarCross RefCross Ref
  7. Chan, T., and Zhou, H. M. 2003. ENO-wavelet Transforms and Some Applications in the book Beyond Wavelets. Academic Press.Google ScholarGoogle Scholar
  8. Chan, T. F., Osher, S., and Shen, J. 2001. The digital tv filter and nonlinear denoising. IEEE Trans. Image Process 10, 231--241. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Choudhury, P., and Tumblin, J. 2005. The trilateral filter for high contrast images and meshes. In ACM SIGGRAPH Courses, ACM, New York, NY, USA, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Claypoole, R., Davis, G., Sweldens, W., and Baraniuk, R. 1998. Adaptive wavelet transforms for image coding using lifting. In Proceedings of Data Compression Conference, 537--543. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cohen, A., and Masson, R. 1999.Wavelet methods for secondorder elliptic problems, preconditioning, and adaptivity. SIAM J. Sci. Comput. 21, 3, 1006--1026. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cohen, A., Daubechies, I., and Feauveau, J. C. 1992. Biorthogonal bases of compactly supported wavelets. In Comm. Pure Applied Math.Google ScholarGoogle Scholar
  13. Dahmen, W. 1994. Some remarks on multiscale transformations, stability and biorthogonality. In Wavelets, Images, and Surface Fitting, Academic Press, 157--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Donoho, D. L. 1994. On minimum entropy segmentation. Tech. rep., Preprint:, Departement of Statistics, Standford University, Stanford, CA, 1994.Google ScholarGoogle Scholar
  15. Durand, F., and Dorsey, J. 2002. Fast bilateral filtering for the display of high-dynamic-range images. In In Proc. ACM SIGGRAPH, ACM, New York, NY, USA, 257--266. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Farbman, Z., Fattal, R., Lischinski, D., and Szeliski, R. 2008. Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM, New York, NY, USA, vol. 27, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fattal, R., Lischinski, D., and Werman, M. 2002. Gradient domain high dynamic range compression. In In Proc. ACM SIGGRAPH, ACM, New York, NY, USA, 249--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Fattal, R., Agrawala, M., and Rusinkiewicz, S. 2007. Multiscale shape and detail enhancement from multi-light image collections. In ACM TOG, ACM, New York, NY, USA, 51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Fattal, R., Carroll, R., and Agrawala, M. 2009. Edge-based image coarsening. to appear in ACM Trans. Graph. available at: www.cs.huji.ac.il/~raananf/projects/bic/m_paper.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Fattal, R. 2008. Single image dehazing. In Proc. ACM SIGGRAPH 27, 3, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Fattal, R. 2009. A brief introduction to first- and second-generation wavelets. Tech. rep., Leibniz Center, Hebrew University, URL www.cs.huji.ac.il/~raananf/projects/eaw/sup_text.pdf.Google ScholarGoogle Scholar
  22. Finlayson, G. D., Hordley, S. D., Drew, M. S., and Tj, E. N. 2002. Removing shadows from images. In In ECCV 2002: European Conference on Computer Vision, 823--836. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Fleishman, S., Drori, I., and Cohen-Or, D. 2003. Bilateral mesh denoising. ACM Trans. Graph. 22, 3, 950--953. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Gonzalez, R. C., and Woods, R. E. 2001. Digital Image Processing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Gortler, S. J., Schröder, P., Cohen, M. F., and Hanrahan, P. 1993. Wavelet radiosity. In In Proc. ACM SIGGRAPH, ACM, New York, NY, USA, 221--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. 1996. The lumigraph. In In Proc. ACM SIGGRAPH, ACM, New York, NY, USA, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Harten, A. 1996. Multiresolution representation of data: a general framework. SIAM J. Numer. Anal. 33, 3, 1205--1256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Khan, E. A., Reinhard, E., Fleming, R. W., and Bülthoff, H. H. 2006. Image-based material editing. ACM Trans. Graph. 25, 3, 654--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lagendijk, R. L., Biemond, J., and Boekee, D. E. 1988. Regularized iterative image restoration with ringing reduction. Acoustics, Speech, and Signal Processing {see also IEEE Transactions on Signal Processing}, IEEE Transactions on 36, 12, 1874--1888.Google ScholarGoogle Scholar
  30. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. In Proc. ACM SIGGRAPH 23, 3, 689--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Li, Y., Sharan, L., and Adelson, E. H. 2005. Compressing and companding high dynamic range images with subband architectures. In Proc. ACM SIGGRAPH 24, 3, 836--844. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Li, Y., Adelson, E. H., and Agarwala, A. 2008. Scribbleboost: Adding classification to edge-aware interpolation of local image and video adjustments. Comput. Graph. Forum 27, 4, 1255--1264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Lischinski, D., Farbman, Z., Uyttendaele, M., and Szeliski, R. 2006. Interactive local adjustment of tonal values. In In Proc. ACM SIGGRAPH, ACM, New York, NY, USA, 646--653. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Lounsbery, M., DeRose, T. D., and Warren, J. 1997. Multiresolution analysis for surfaces of arbitrary topological type. ACM Trans. Graph. 16, 1, 34--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Mallat, S. 1999. A Wavelet Tour of Signal Processing, Second Edition (Wavelet Analysis & Its Applications). Academic Press, September.Google ScholarGoogle Scholar
  36. Paris, S., and Durand, F. 2006. A fast approximation of the bilateral filter using a signal processing approach. In In Proceedings of the European Conference on Computer Vision, 568--580. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Pellacini, F., and Lawrence, J. 2007. Appwand: editing measured materials using appearance-driven optimization. In In Proc. ACM SIGGRAPH, ACM, New York, NY, USA, 54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Pérez, P., Gangnet, M., and Blake, A. 2003. Poisson image editing. In Proc. ACM SIGGRAPH 22, 3, 313--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Perona, P., and Malik, J. 1990. Scale-space and edge detection using anisotropic diffusion. In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, 629--639. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., and Toyama, K. 2004. Digital photography with flash and no-flash image pairs. ACM Trans. Graph. 23, 3, 664--672. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Peyré, G., and Mallat, S. 2005. Surface compression with geometric bandelets. ACM Trans. Graph. 24, 3, 601--608. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Schlick, C. 1994. Quantization techniques for visualization of high dynamic range pictures. In Photorealistic rendering techniques, proc. EGWR, Springer-Verlag, 7--20.Google ScholarGoogle Scholar
  43. Schröder, P., and Sweldens, W. 1995. Spherical wavelets: efficiently representing functions on the sphere. In In Proc. ACM SIGGRAPH, ACM, New York, NY, USA, 161--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Secker, A., and Taubman, D. 2003. Lifting-based invertible motion adaptive transform (limat) framework for highly scalable video compression. Image Processing, IEEE Transactions on 12, 12 (Dec.), 1530--1542. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Shen, J., Jin, X., Zhou, C., and Wang, C. C. L. 2007. Technical section: Gradient based image completion by solving the poisson equation. Comput. Graph. 31, 1, 119--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Shepard, D. 1968. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM national conference, ACM, New York, NY, USA, 517--524. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Sun, J., Jia, J., Tang, C.-K., and Shum, H.-Y. 2004. Poisson matting. In In Proc. ACM SIGGRAPH, ACM, New York, NY, USA, 315--321. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Sweldens, W. 1995. The lifting scheme: A new philosophy in biorthogonal wavelet constructions. In in Wavelet Applications in Signal and Image Processing III, 68--79.Google ScholarGoogle Scholar
  49. Sweldens, W. 1998. The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29, 2, 511--546. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Szeliski, R. 2006. Locally adapted hierarchical basis preconditioning. In In Proc. ACM SIGGRAPH, ACM, New York, NY, USA, 1135--1143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Tomasi, C., and Manduchi, R. 1998. Bilateral filtering for gray and color images. In ICCV '98: Proceedings of the Sixth International Conference on Computer Vision, IEEE Computer Society, Washington, DC, USA, 839. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Tumblin, J., and Turk, G. 1999. Lcis: a boundary hierarchy for detail-preserving contrast reduction. In In Proc. ACM SIGGRAPH, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 83--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Uytterhoeven, G., Roose, D., and Bultheel, A. 1999. Integer wavelet transforms using the lifting scheme. World Scientific and Engineering Society Press, 198--200.Google ScholarGoogle Scholar
  54. Weiss, Y. 2001. Deriving intrinsic images from image sequences. IEEE International Conference on Computer Vision 2.Google ScholarGoogle ScholarCross RefCross Ref
  55. Yatziv, L., and Sapiro, G. 2006. Fast image and video colorization using chrominance blending. Image Processing, IEEE Transactions on 15, 5, 1120--1129. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Edge-avoiding wavelets and their applications

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 28, Issue 3
            August 2009
            750 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/1531326
            Issue’s Table of Contents

            Copyright © 2009 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 27 July 2009
            Published in tog Volume 28, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader