skip to main content
research-article

Kernel Nyström method for light transport

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

We propose a kernel Nyström method for reconstructing the light transport matrix from a relatively small number of acquired images. Our work is based on the generalized Nyström method for low rank matrices. We introduce the light transport kernel and incorporate it into the Nyström method to exploit the nonlinear coherence of the light transport matrix. We also develop an adaptive scheme for efficiently capturing the sparsely sampled images from the scene. Our experiments indicate that the kernel Nyström method can achieve good reconstruction of the light transport matrix with a few hundred images and produce high quality relighting results. The kernel Nyström method is effective for modeling scenes with complex lighting effects and occlusions which have been challenging for existing techniques.

Skip Supplemental Material Section

Supplemental Material

tps042_09.mp4

References

  1. An, X., and Pellacini, F. 2008. Appprop: All-pairs appearance-space edit propagation. ACM Transactions on Graphics 27, 3 (Aug.), 40:1--40:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Chuang, Y.-Y., Zongker, D. E., Hindorff, J., Curless, B., Salesin, D. H., and Szeliski, R. 2000. Environment matting extensions: Towards higher accuracy and real-time capture. In Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, 121--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Cristianini, N., and Shawe-Taylor, J. 2000. An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Debevec, P. E., and Malik, J. 1997. Recovering high dynamic range radiance maps from photographs. In Proceedings of SIGGRAPH 97, Computer Graphics Proceedings, Annual Conference Series, 369--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. In Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, 145--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Fazel, M. 2002. Matrix rank minimization with applications. PhD thesis, Stanford University.Google ScholarGoogle Scholar
  7. Fuchs, M., Blanz, V., Lensch, H. P. A., and Seidel, H.-P. 2007. Adaptive sampling of reflectance fields. ACM Transactions on Graphics 26, 2 (June), 10:1--10:18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Garg, G., Talvala, E.-V., Levoy, M., and Lensch, H. P. A. 2006. Symmetric photography: Exploiting data-sparseness in reflectance fields. In Rendering Techniques 2006: 17th Eurographics Workshop on Rendering, 251--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Goesele, M., Lensch, H. P. A., Lang, J., Fuchs, C., and Seidel, H.-P. 2004. Disco: acquisition of translucent objects. ACM Transactions on Graphics 23, 3 (Aug.), 835--844. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Goreinov, S., Tyrtyshnikov, E. E., and Zamarashkin, N. L. 1997. A theory of pseudo-skeleton approximations. Linear Algeabra and Applications 261, 1--21.Google ScholarGoogle ScholarCross RefCross Ref
  11. Hašan, M., Pellacini, F., and Bala, K. 2007. Matrix rowcolumn sampling for the many-light problem. ACM Transactions on Graphics 26, 3 (July), 26:1--26:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hašan, M., Velazquez-Armendariz, E., Pellacini, F., and Bala, K. 2008. Tensor clustering for rendering manylight animations. Computer Graphics Forum (Proc. Eurographics Rendering 2008) 27, 4, 1105--1114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hawkins, T., Einarsson, P., and Debevec, P. 2005. A dual light stage. In Rendering Techniques 2005: 16th Eurographics Workshop on Rendering, 91--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Levoy, M., and Hanrahan, P. M. 1996. Light field rendering. In Proceedings of SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Series, 31--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Lin, Z., Wong, T.-T., and Shum, H.-Y. Relighting with the reflected irradiance field: Representation, sampling and reconstruction. International Journal of Computer Vision 49, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mahajan, D., Shlizerman, I. K., Ramamoorthi, R., and Belhumeur, P. 2007. A theory of locally low dimensional light transport. ACM Transactions on Graphics 26, 3 (July), 62:1--62:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Masselus, V., Peers, P., Dutré, P., and Willems, Y. D. 2003. Relighting with 4d incident light fields. ACM Transactions on Graphics 22, 3 (July), 613--620. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Masselus, V., Peers, P., Dutr0108, P., and Willems, Y. D. 2004. Smooth reconstruction and compact representation of reflectance functions for image-based relighting. In Rendering Techniques 2004: 15th Eurographics Workshop on Rendering, 287--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Matusik, W., Pfister, H., Ngan, A., Beardsley, P., Ziegler, R., and McMillan, L. 2002. Image-based 3D photography using opacity hulls. ACM Transactions on Graphics 21, 3 (July), 427--437. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Matusik, W., Loper, M., and Pfister, H. 2004. Progressively-refined reflectance functions from natural illumination. In Rendering Techniques 2004: 15th Eurographics Workshop on Rendering, 299--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ng, R., Ramamoorthi, R., and Hanrahan, P. 2003. Allfrequency shadows using non-linear wavelet lighting approximation. ACM Transactions on Graphics 22, 3 (July), 376--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Peers, P., and Dutré, P. 2005. Inferring reflectance functions from wavelet noise. In Rendering Techniques 2005: 16th Eurographics Workshop on Rendering, 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Peers, P., Vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., and Dutré, P. 2006. A compact factored representation of heterogeneous subsurface scattering. ACM Transactions on Graphics 25, 3 (July), 746--753. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Peers, P., Mahajan, D. K., Lamond, B., Ghosh, A., Matusik, W., Ramamoorthi, R., and Debevec, P. 2009. Compressive light transport sensing. ACM Transactions on Graphics 28, 1 (Jan.), 3:1--3:18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Platt, J. C. 2005. Fastmap, metricmap, and landmark mds are all nyström algorithms. In 10th International Workshop on Artificial Intelligence and Statistics, 261--268.Google ScholarGoogle Scholar
  26. Press, W. H., et al. 1992. Numerical recipes in C (second edition). Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sen, P., and Darabi, S. 2009. Compressive Dual Photography. Computer Graphics Forum 28, 2, 609--618.Google ScholarGoogle ScholarCross RefCross Ref
  28. Sen, P., Chen, B., Garg, G., Marschner, S. R., Horowitz, M., Levoy, M., and Lensch, H. P. A. 2005. Dual photography. ACM Transactions on Graphics 24, 3, 745--755. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wenger, A., Gardner, A., Tchou, C., Unger, J., Hawkins, T., and Debevec, P. 2005. Performance relighting and reflectance transformation with time-multiplexed illumination. ACM Transactions on Graphics 24, 3 (Aug.), 756--764. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Williams, C., and Seeger, M. 2000. Using the nyström method to speed up kernel machines. Advances in Neural Information Processing Systems 13, 682--688.Google ScholarGoogle Scholar
  31. Zongker, D. E., Werner, D. M., Curless, B., and Salesin, D. H. 1999. Environment matting and compositing. In Proceedings of SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference Series, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Kernel Nyström method for light transport

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 28, Issue 3
            August 2009
            750 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/1531326
            Issue’s Table of Contents

            Copyright © 2009 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 27 July 2009
            Published in tog Volume 28, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader