skip to main content
research-article

An empirical BSSRDF model

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

We present a new model of the homogeneous BSSRDF based on large-scale simulations. Our model captures the appearance of materials that are not accurately represented using existing single scattering models or multiple isotropic scattering models (e.g. the diffusion approximation). We use an analytic function to model the 2D hemispherical distribution of exitant light at a point on the surface, and a table of parameter values of this function computed at uniformly sampled locations over the remaining dimensions of the BSSRDF domain. This analytic function is expressed in elliptic coordinates and has six parameters which vary smoothly with surface position, incident angle, and the underlying optical properties of the material (albedo, mean free path length, phase function and the relative index of refraction). Our model agrees well with measured data, and is compact, requiring only 250MB to represent the full spatial- and angular-distribution of light across a wide spectrum of materials. In practice, rendering a single material requires only about 100KB to represent the BSSRDF.

Skip Supplemental Material Section

Supplemental Material

tps043_09.mp4

References

  1. Blinn, J. F. 1982. Light reflection functions for simulation of clouds and dusty surfaces. In Computer Graphics (Proceedings of SIGGRAPH 82), vol. 16, 21--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bouthors, A., Neyret, F., Max, N., Bruneton, E., and Crassin, C. 2008. Interactive multiple anisotropic scattering in clouds. In I3D '08: Proceedings of the 2008 symposium on Interactive 3D graphics and games, 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Cerezo, E., Perez-Cazorla, F., Pueyo, X., Seron, F., and Sillion, F. 2005. A survey on participating media rendering techniques. The Visual Computer.Google ScholarGoogle Scholar
  4. Dana, K., Ginneken, B., Nayar, S., and Koenderink, J. 1999. Reflectance and texture of real-world surfaces. ACM Trans. Graphic. 18, 1, 1--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Donner, C., and Jensen, H. W. 2005. Light diffusion in multi-layered translucent materials. ACM Trans. Graphic. 24, 3, 1032--1039. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Donner, C., and Jensen, H. W. 2007. Rendering translucent materials using photon diffusion. In Rendering Techniques, 243--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Goesele, M., Lensch, H. P. A., Lang, J., Fuchs, C., and Siedel, H.-P. 2004. DISCO: aquisition of translucent objects. ACM Trans. Graphic. 23, 3, 835--844. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hanrahan, P., and Krueger, W. 1993. Reflection from layered surfaces due to subsurface scattering. In Proceedings of SIGGRAPH 1993, 164--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Jensen, H. W., and Buhler, J. 2002. A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graphic. 21, 576--581. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Jensen, H. W., Legakis, J., and Dorsey, J. 1999. Rendering of wet materials. In Rendering Techniques, 273--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of SIGGRAPH 2001, 511--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Jensen, H. W. 1996. Global illumination using photon maps. In Rendering Techniques, 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jensen, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. AK Peters. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Joshi, N., Donner, C., and Jensen, H. W. 2006. Noninvasive measurement of scattering anisotropy in turbid materials by nonnormal incident illumination. Opt. Lett. 31, 936--938.Google ScholarGoogle ScholarCross RefCross Ref
  15. Kajiya, J. T. 1986. The rendering equation. In Computer Graphics (Proceedings of SIGGRAPH 86), 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Korn, G. A., and Korn, T. M. 2000. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. Courier Dover Publications.Google ScholarGoogle Scholar
  17. Li, H., Pellacini, F., and Torrance, K. 2005. A hybrid monte carlo method for accurate and efficient subsurface scattering. In Rendering Techniques, 283--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Trans. Graphic. 22, 3, 759--769. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Narasimhan, S. G., Gupta, M., Donner, C., Ramamoorthi, R., Nayar, S., and Jensen, H. W. 2006. Acquiring scattering properties of participating media by dilution. ACM Trans. Graphic. 25, 1003--1012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. 1977. Geometrical Considerations and Nomenclature for Reflectance. National Bureau of Standards.Google ScholarGoogle Scholar
  21. Peers, P., Vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., and Dutré, P. 2006. A compact factored representation of heterogeneous subsurface scattering. ACM Trans. Graphic. 25, 3, 746--753. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Pharr, M., and Hanrahan, P. 2000. Monte carlo evaluation of non-linear scattering equations for subsurface reflection. In Proceedings of SIGGRAPH 2000, 75--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Premože, S., Ashikhmin, M., and Shirley, P. 2003. Path integration for light transport in volumes. In Rendering Techniqes, 52--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Premoze, S., Ashikhmin, M., Tessendorf, J., Ramamoorthi, R., and Nayar, S. 2004. Practical rendering of multiple scattering effects in participating media. In Rendering Techniques, 363--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Stam, J. 1995. Multiple scattering as a diffusion process. In Rendering Techniques, 41--50.Google ScholarGoogle Scholar
  26. Tong, X., Wang, J., Lin, S., Guo, B., and Shum, H.-Y. 2005. Modeling and rendering of quasi-homogeneous materials. ACM Trans. Graphic. 24, 3, 1054--1061. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ward, G. J. 1992. Measuring and modeling anisotropic reflection. In Computer Graphics (Proceedings of SIGGRAPH 92), 265--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from complex surfaces. In Computer Graphics (Proceedings of SIGGRAPH 92), 255--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Zhang, Z. 1999. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 11, 1330--1334. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. An empirical BSSRDF model

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Graphics
              ACM Transactions on Graphics  Volume 28, Issue 3
              August 2009
              750 pages
              ISSN:0730-0301
              EISSN:1557-7368
              DOI:10.1145/1531326
              Issue’s Table of Contents

              Copyright © 2009 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 27 July 2009
              Published in tog Volume 28, Issue 3

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader