skip to main content
research-article

Joint-aware manipulation of deformable models

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

Complex mesh models of man-made objects often consist of multiple components connected by various types of joints. We propose a joint-aware deformation framework that supports the direct manipulation of an arbitrary mix of rigid and deformable components. First we apply slippable motion analysis to automatically detect multiple types of joint constraints that are implicit in model geometry. For single-component geometry or models with disconnected components, we support user-defined virtual joints. Then we integrate manipulation handle constraints, multiple components, joint constraints, joint limits, and deformation energies into a single volumetric-cell-based space deformation problem. An iterative, parallelized Gauss-Newton solver is used to solve the resulting nonlinear optimization. Interactive deformable manipulation is demonstrated on a variety of geometric models while automatically respecting their multi-component nature and the natural behavior of their joints.

Skip Supplemental Material Section

Supplemental Material

tps082_09.mp4

References

  1. Attene, M., Falcidieno, B., and Spagnuolo, M. 2006. Hierarchical mesh segmentation based on fitting primitives. The Visual Computer 22, 3, 181--193. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Au, O. K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., and Lee, T.-Y. 2008. Skeleton extraction by mesh contraction. ACM Trans. Graphics 27, 3, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baran, I., and Popović, J. 2007. Automatic rigging and animation of 3d characters. ACM Trans. Graphics 26, 3, 72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics 14, 1, 213--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. 2006. Primo: coupled prisms for intuitive surface modeling. In SGP '06: Proceedings of the fourth Eurographics symposium on Geometry processing, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Botsch, M., Pauly, M., Wicke, M., and Gross, M. 2007. Adaptive space deformations based on rigid cells. Computer Graphics Forum 26, 3, 339--347.Google ScholarGoogle ScholarCross RefCross Ref
  7. Der, K. G., Sumner, R. W., and Popović, J. 2006. Inverse kinematics for reduced deformable models. ACM Trans. Graphics 25, 3, 1174--1179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 1997. Dynamic animation synthesis with free-form deformations. IEEE Transactions on Visualization and Computer Graphics 3, 3, 201--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fu, H., Cohen-Or, D., Dror, G., and Sheffer, A. 2008. Upright orientation of man-made objects. ACM Trans. Graphics 27, 3, 1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gain, J., and Bechmann, D. 2008. A survey of spatial deformation from a user-centered perspective. ACM Trans. Graphics 27, 4, 1--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Galoppo, N., Otaduy, M. A., Tekin, S., Gross, M., and Lin, M. C. 2007. Soft articulated characters with fast contact handling. Computer Graphics Forum 26, 3 (Sept.), 243--253.Google ScholarGoogle ScholarCross RefCross Ref
  12. Gelfand, N., and Guibas, L. J. 2004. Shape segmentation using local slippage analysis. In SGP '04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, 214--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Harrison, J., Rensink, R. A., and van de Panne, M. 2004. Obscuring length changes during animated motion. ACM Trans. Graphics 23, 3, 569--573. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L., Teng, S., Bao, H., Guo, B., and Shum, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graphics 25, 3, 1126--1134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. James, D. L., and Twigg, C. D. 2005. Skinning mesh animations. ACM Trans. Graphics 24, 3, 399--407. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Katz, S., and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graphics 22, 3, 954--961. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kaufmann, P., Martin, S., Botsch, M., and Gross, M. 2008. Flexible simulation of deformable models using discontinuous galerkin fem. In 2008 ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 105--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kobbelt, L., Campagna, S., Vorsatz, J., and Seidel, H.-P. 1998. Interactive multi-resolution modeling on arbitrary meshes. In SIGGRAPH Conference Proceedings, 105--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kraevoy, V., Sheffer, A., Shamir, A., and Cohen-Or, D. 2008. Non-homogeneous resizing of complex models. In ACM SIGGRAPH Asia 2008, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lasseter, J. 1987. Principles of traditional animation applied to 3d computer animation. In SIGGRAPH Conference Proceedings, 35--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In SIGGRAPH Conference Proceedings, 165--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Li, W., Agrawala, M., Curless, B., and Salesin, D. 2008. Automated generation of interactive 3d exploded view diagrams. ACM Trans. Graphics 27, 3, 1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lipman, Y., Sorkine, O., Levin, D., and Cohen-Or, D. 2005. Linear rotation-invariant coordinates for meshes. ACM Trans. Graphics 24, 3, 479--487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Liu, R., Zhang, H., Shamir, A., and Cohen-Or, D. 2009. A part-aware surface metric for shape analysis. In Eurographics, vol. 28, to appear.Google ScholarGoogle Scholar
  25. Madsen, K., Nielsen, H., and Tingleff, O. 2004. Methods for nonlinear least squares problems. Tech. rep., Informatics and Mathematical Modelling, Technical University of Denmark.Google ScholarGoogle Scholar
  26. Magnenat-Thalmann, N., Laperriere, R., and Thalmann, D. 1988. Joint dependent local deformations for hand animation and object grasping. In Graphics Interface, 26--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Mitra, N. J., Guibas, L. J., and Pauly, M. 2007. Symmetrization. ACM Trans. Graphics 26, 3, 63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Murray, R. M., Li, Z., and Sastry, S. S. 1994. A Mathematical Introduction to Robotic Manipulation. CRC Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Nocedal, J., and Wright, S. J. 1999. Numerical Optimization. Springer.Google ScholarGoogle Scholar
  30. Parent, R. 2008. Computer Animation: Algorithms and Techniques, second ed. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Popa, T., Julius, D., and Sheffer, A. 2006. Material-aware mesh deformations. In Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006, 22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. In SIGGRAPH Conference Proceedings, 151--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., and Guo, B. 2007. Mesh puppetry: cascading optimization of mesh deformation with inverse kinematics. ACM Trans. Graphics 26, 3, 81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rossl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. ACM Trans. Graphics 24, 3, 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sumner, R. W., Schmid, J., and Pauly, M. 2007. Embedded deformation for shape manipulation. ACM Trans. Graphics 26, 3, 80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Theobalt, C., Rössl, C., de Aguiar, E., and Seidel, H.-P. 2007. Animation collage. In Symposium on Computer Animation, 271--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., and Shum, H.-Y. 2004. Mesh editing with poisson-based gradient field manipulation. ACM Trans. Graphics 23, 3, 644--651. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zorin, D., Schröder, P., and Sweldens, W. 1997. Interactive multiresolution mesh editing. In SIGGRAPH Conference Proceedings, 259--268. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Joint-aware manipulation of deformable models

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 28, Issue 3
        August 2009
        750 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/1531326
        Issue’s Table of Contents

        Copyright © 2009 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2009
        Published in tog Volume 28, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader