skip to main content
research-article

Harmonic fluids

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

Fluid sounds, such as splashing and pouring, are ubiquitous and familiar but we lack physically based algorithms to synthesize them in computer animation or interactive virtual environments. We propose a practical method for automatic procedural synthesis of synchronized harmonic bubble-based sounds from 3D fluid animations. To avoid audio-rate time-stepping of compressible fluids, we acoustically augment existing incompressible fluid solvers with particle-based models for bubble creation, vibration, advection, and radiation. Sound radiation from harmonic fluid vibrations is modeled using a time-varying linear superposition of bubble oscillators. We weight each oscillator by its bubble-to-ear acoustic transfer function, which is modeled as a discrete Green's function of the Helmholtz equation. To solve potentially millions of 3D Helmholtz problems, we propose a fast dual-domain multipole boundary-integral solver, with cost linear in the complexity of the fluid domain's boundary. Enhancements are proposed for robust evaluation, noise elimination, acceleration, and parallelization. Examples are provided for water drops, pouring, babbling, and splashing phenomena, often with thousands of acoustic bubbles, and hundreds of thousands of transfer function solves.

Skip Supplemental Material Section

Supplemental Material

tps026_09.mp4

References

  1. Abramowitz, M., and Stegun, I. A. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively Sampled Particle Fluids. In Proc. ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Begault, D. 1994. 3-D sound for virtual reality and multimedia. Academic Press Professional, Inc. San Diego, CA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Blake, W. 1986. Mechanics of Flow-Induced Sound and Vibration. Academic Press.Google ScholarGoogle Scholar
  5. Bonneel, N., Drettakis, G., Tsingos, N., Viaud-Delmon, I., and James, D. 2008. Fast modal sounds with scalable frequency-domain synthesis. ACM Trans. on Graphics 27, 3 (Aug.), 24:1--24:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bragg, S. 1920. The World of Sound. G. Bell and Sons Ltd., London.Google ScholarGoogle Scholar
  7. Brown, C. P., and Duda, R. O. 1998. A Structural Model for Binaural Sound Synthesis. IEEE Trans. on Speech and Audio Processing 6, 5.Google ScholarGoogle ScholarCross RefCross Ref
  8. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid Fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. on Graphics 23, 3 (Aug.), 377--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chan, S., and Purisima, E. 1998. A new tetrahedral tesselation scheme for isosurface generation. Computers & Graphics 22, 1, 83--90.Google ScholarGoogle Scholar
  10. Childs, E. 2001. The Sonification of Numerical Fluid Flow Simulations. In Intl. Conf. on Auditory Display (ICAD 2001).Google ScholarGoogle Scholar
  11. Cleary, P. W., Pyo, S. H., Prakash, M., and Koo, B. K. 2007. Bubbling and Frothing Liquids. Proc. ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cook, P. 2002. Real Sound Synthesis for Interactive Applications. AK Peters, Ltd. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Deane, G. B. 1997. Sound generation and air entrainment by breaking waves in the surf zone. The Journal of the Acoustical Society of America 102 (November), 2671--2689.Google ScholarGoogle ScholarCross RefCross Ref
  14. Dobashi, Y., Yamamoto, T., and Nishita, T. 2003. Realtime rendering of aerodynamic sound using sound textures based on computational fluid dynamics. ACM Trans. on Graphics 22, 3 (July), 732--740. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Dobashi, Y., Yamamoto, T., and Nishita, T. 2004. Synthesizing sound from turbulent field using sound textures for interactive fluid simulation. Computer Graphics Forum 23, 3 (Sept.), 539--545.Google ScholarGoogle ScholarCross RefCross Ref
  16. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surface. ACM Trans. on Graphics 22, 3, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. Proc. ACM SIGGRAPH, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Foster, N., and Metaxas, D. 1996. Realistic Animation of Liquids. Graphical Models and Image Processing 58, 5, 471--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Franz, G. J. 1959. Splashes as Sources of Sound in Liquids. Journal of the Acoustical Society of America 31 (Aug), 1080--1096.Google ScholarGoogle ScholarCross RefCross Ref
  20. Funkhouser, T. A., Min, P., and Carlbom, I. 1999. Realtime acoustic modeling for distributed virtual environments. In Proc. of SIGGRAPH 99, 365--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Golub, G., and van Loan, C. 1996. Matrix computations, third ed. Johns Hopkins University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Greenwood, S., and House, D. 2004. Better with Bubbles: Enhancing the Visual Realism of Simulated Fluid. In Eurographics/ACM SIGGRAPH Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Gumerov, N., and Duraiswami, R. 2005. Fast multipole methods for the Helmholtz equation in three dimensions. Elsevier.Google ScholarGoogle Scholar
  24. Hong, J.-M., Lee, H.-Y., Yoon, J.-C., and Kim, C.-H. 2008. Bubbles alive. ACM Trans. on Graphics 27, 3 (Aug.), 48:1--48:4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Howe, M. S. 1998. Acoustics of Fluid-Structure Interactions. Cambridge Press.Google ScholarGoogle Scholar
  26. Howe, M. S. 2002. Theory of Vortex Sound. Cambridge Press.Google ScholarGoogle Scholar
  27. Imura, M., Nakano, Y., Yasumuro, Y., Manabe, Y., and Chihara, K. 2007. Real-time generation of CG and sound of liquid with bubble. In ACM SIGGRAPH 2007 Posters. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. James, D. L., Barbic, J., and Pai, D. K. 2006. Precomputed Acoustic Transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Trans. on Graphics 25, 3 (July), 987--995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Jensen, F. 1994. Computational Ocean Acoustics. American Institute of Physics.Google ScholarGoogle Scholar
  30. Kim, T., and Carlson, M. 2007. A simple boiling module. In Proc. of Symp. on Computer Animation (SCA). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kim, B., Liu, Y., Llamas, I., Jiao, X., and Rossignac, J. 2007. Simulation of bubbles in foam with the volume control method. ACM Trans. on Graphics 26, 3 (July), 98:1--98:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Kita, E., and Kamiya, N. 1995. Trefftz method: An overview. Advances in Engineering Software 24, 89--96.Google ScholarGoogle ScholarCross RefCross Ref
  33. Kleiner, M., Dalenbaeck, B., and Svensson, P. 1993. Auralization-An Overview. Journal-Audio Engineering Society 41, 861--861.Google ScholarGoogle Scholar
  34. Leighton, T. 1994. The Acoustic Bubble. Academic Press.Google ScholarGoogle Scholar
  35. Longuet-Higgins, M. S. 1990. An analytic model of sound production by raindrops. J. Fluid Mech. 214, 395--410.Google ScholarGoogle ScholarCross RefCross Ref
  36. McCabe, R. K., and Rangwalla, A. A. 1994. Auditory display of computational fluid dynamics data. In Auditory Display: Sonication, Audication, and Auditory Interfaces; Santa Fe Institute Studies in the Sciences of Complexity, Proc. Vol. XVIII, Addison Wesley, G. Kramer, Ed., 321--340.Google ScholarGoogle Scholar
  37. Miner, N. E., and Caudell, T. P. 2005. Using wavelets to synthesize stochastic-based sounds for immersive virtual environments. ACM Trans. on Applied Perception 2, 4, 521--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Minnaert, M. 1933. On musical air-bubbles and sounds of running water. Phil Mag 16, 235--248.Google ScholarGoogle ScholarCross RefCross Ref
  39. O'Brien, J. F., Cook, P. R., and Essl, G. 2001. Synthesizing sounds from physically based motion. In Proc. of ACM SIGGRAPH 2001, 529--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. O'Brien, J. F., Shen, C., and Gatchalian, C. M. 2002. Synthesizing sounds from rigid-body simulations. In ACM SIGGRAPH Symposium on Computer Animation (SCA), 175--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ochmann, M. 1995. The Source Simulation Technique for Acoustic Radiation Problems. Acustica 81.Google ScholarGoogle Scholar
  42. Oguz, H., and Prosperetti, A. 1990. Bubble entrainment by the impact of drops on liquid surfaces. J. Fluid Mech. 219, 143--179.Google ScholarGoogle ScholarCross RefCross Ref
  43. Ohayon, R. 2004. Reduced models for fluid-structure interaction problems. Int. J. Numer. Meth. Engng 60, 1, 139--152.Google ScholarGoogle ScholarCross RefCross Ref
  44. Osher, S., and Fedkiw, R. 2003. Level Set Methods and Dynamic Implicit Surfaces. Springer.Google ScholarGoogle Scholar
  45. Pumphery, H., Crum, L., and Bjørnø, L. 1989. Underwater sound produced by individual drop impacts and rainfall. J. Acoust. Soc. Am. 85, 1518--1526.Google ScholarGoogle ScholarCross RefCross Ref
  46. Stam, J. 1999. Stable fluids. In Proc. ACM SIGGRAPH, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Strasberg, M. 1953. The pulsation frequency of non-spherical gas bubbles in liquids. J. Acoust. Soc. Am. 25, 536--537.Google ScholarGoogle ScholarCross RefCross Ref
  48. Takala, T., and Hahn, J. 1992. Sound rendering. In Computer Graphics (Proc. of SIGGRAPH 92), 211--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Thuerey, N., Sadlo, F., Schirm, S., and M. Müller, M. G. 2007. Real-time simulations of bubbles and foam within a shallow-water framework. In Proc. of Symp. on Computer Animation (SCA). Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Tsingos, N., Funkhouser, T., Ngan, A., and Carlbom, I. 2001. Modeling acoustics in virtual environments using the uniform theory of diffraction. In Proc. of ACM SIGGRAPH 2001, 545--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Tsingos, N., Gallo, E., and Drettakis, G. 2004. Perceptual audio rendering of complex virtual environments. ACM Trans. on Graphics 23, 3 (Aug.), 249--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Urick, R. 1975. Principles of Underwater Sound. McGraw-Hill.Google ScholarGoogle Scholar
  53. van den Doel, K., and Pai, D. K. 1996. Synthesis of shape dependent sounds with physical modeling. In Intl. Conf. on Auditory Display (ICAD 96).Google ScholarGoogle Scholar
  54. van den Doel, K., Kry, P. G., and Pai, D. K. 2001. FoleyAutomatic: Physically-Based Sound Effects for Interactive Simulation and Animation. In Proc. of ACM SIGGRAPH 2001, 537--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. van den Doel, K. 2005. Physically based models for liquid sounds. ACM Trans. on Applied Perception 2, 4, 534--546. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Vorlander, M. 2007. Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality. Springer Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Zheng, W., Yong, J.-H., and Paul, J.-C. 2006. Simulation of bubbles. In Proc. of Symp. on Computer Animation (SCA), 325--333. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. on Graphics 24, 3 (Aug.), 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Harmonic fluids

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Graphics
              ACM Transactions on Graphics  Volume 28, Issue 3
              August 2009
              750 pages
              ISSN:0730-0301
              EISSN:1557-7368
              DOI:10.1145/1531326
              Issue’s Table of Contents

              Copyright © 2009 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 27 July 2009
              Published in tog Volume 28, Issue 3

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader