skip to main content
research-article

Energy-preserving integrators for fluid animation

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

Numerical viscosity has long been a problem in fluid animation. Existing methods suffer from intrinsic artificial dissipation and often apply complicated computational mechanisms to combat such effects. Consequently, dissipative behavior cannot be controlled or modeled explicitly in a manner independent of time step size, complicating the use of coarse previews and adaptive-time stepping methods. This paper proposes simple, unconditionally stable, fully Eulerian integration schemes with no numerical viscosity that are capable of maintaining the liveliness of fluid motion without recourse to corrective devices. Pressure and fluxes are solved efficiently and simultaneously in a time-reversible manner on simplicial grids, and the energy is preserved exactly over long time scales in the case of inviscid fluids. These integrators can be viewed as an extension of the classical energy-preserving Harlow-Welch / Crank-Nicolson scheme to simplicial grids.

Skip Supplemental Material Section

Supplemental Material

tps027_09.mp4

References

  1. Benzi, M., Golub, G. H., and Liesen, J. 2005. Numerical solution of saddle point problems. Acta Numerica 14, 1--137.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. 2007. TRACKS: toward directable thin shells. ACM Trans. on Graphics 26, 3, art. 50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Brackbill, J., and Ruppel, H. 1986. FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. Journal of Computational Physics 65, 314--343. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chentanez, N., Feldman, B. E., Labelle, F., O'Brien, J. F., and Shewchuk, J. 2007. Liquid simulation on latticebased tetrahedral meshes. In Symposium on Computer Animation, 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chorin, A., and Marsden, J. 1979. A Mathematical Introduction to Fluid Mechanics, 3rd edition ed. Springer-Verlag.Google ScholarGoogle Scholar
  6. Duponcheel, M., Orlandi, P., and Winckelmans, G. 2008. Time-reversibility of the Euler equations as a benchmark for energy conserving schemes. Journal of Computational Physics 227, 19, 8736--8752. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M. 2007. Stable, circulation-preserving, simplicial fluids. ACM Transactions on Graphics 26, 1 (Jan.), art. 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In Proceedings of ACM SIGGRAPH, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Feldman, B. E., O'Brien, J. F., and Arikan, O. 2003. Animating suspended particle explosions. ACM Transactions on Graphics 22, 3 (July), 708--715. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Feldman, B. E., O'Brien, J. F., and Klingner, B. M. 2005. Animating gases with hybrid meshes. ACM Transactions on Graphics 24, 3, 904--909. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Foster, N., and Metaxas, D. 1997. Modeling the motion of a hot, turbulent gas. In Proceedings of SIGGRAPH, 181--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gresho, P. M., and Sani, R. L. 2000. Incompressible Flow and the Finite Element Method. J. Wiley & Sons.Google ScholarGoogle Scholar
  13. Harlow, F. H., and Welch, J. E. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids 8, 12 (Dec.), 2182--2189.Google ScholarGoogle ScholarCross RefCross Ref
  14. Kim, B., Liu, Y., Llamas, I., and Rossignac, J. 2007. Advections with significantly reduced dissipation and diffusion. IEEE Trans. on Visualiz. and Comp. Graphics 13(1), 135--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Transactions on Graphics 23, 3 (Aug.), 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mahesh, K., Constantinescu, G., and Moin, P. 2004. A numerical method for large-eddy simulation in complex geometries. J. Comput. Phys. 197, 1, 215--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Molemaker, J., Cohen, J. M., Patel, S., and Yong Noh, J. 2008. Low viscosity flow simulations for animation. In Symposium on Computer Animation, 9--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Pavlov, D. 2009. Structure-preserving Discretizations of Incompressible Fluids. PhD dissertation in Mathematics, California Institute of Technology.Google ScholarGoogle Scholar
  19. Perot, B. 2000. Conservation properties of unstructured staggered mesh schemes. J. Comput. Phys. 159, 1, 58--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Schechter, H., and Bridson, R. 2008. Evolving sub-grid turbulence for smoke animation. In Symposium on Computer Animation, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Transactions on Graphics 24, 3 (Aug.), 910--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An unconditionally stable MacCormack method. J. Sci. Comp. 35, 350--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Shi, L., and Yu, Y. 2002. Visual smoke simulation with adaptive octree refinement. Computer Graphics and Imaging.Google ScholarGoogle Scholar
  24. Simo, J., and Armero, F. 1994. Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations. Computer Methods in Applied Mechanics and Engineering 111, 1--2, 111--154.Google ScholarGoogle ScholarCross RefCross Ref
  25. Stam, J. 1999. Stable fluids. In Proceedings of ACM SIGGRAPH, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Steinhoff, J., and Underhill, D. 1994. Modification of the euler equations for Vorticity Confinement. Physics of Fluids 6, 8 (Aug.), 2738--2744.Google ScholarGoogle ScholarCross RefCross Ref
  27. Stern, A., and Desbrun, M. 2006. Discrete geometric mechanics for variational time integrators. In ACM SIGGRAPH Course Notes, 75--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Zhang, X., Schmidt, D., and Perot, B. 2002. Accuracy and conservation properties of a 3d unstructured staggered mesh scheme for fluid dynamics. J. Comput. Phys. 175, 2, 764--791. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. In Proceedings of ACM SIGGRAPH, 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Energy-preserving integrators for fluid animation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 28, Issue 3
      August 2009
      750 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/1531326
      Issue’s Table of Contents

      Copyright © 2009 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 July 2009
      Published in tog Volume 28, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader