skip to main content
research-article

Modular bases for fluid dynamics

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

We present a new approach to fluid simulation that balances the speed of model reduction with the flexibility of grid-based methods. We construct a set of composable reduced models, or tiles, which capture spatially localized fluid behavior. We then precompute coupling terms so that these models can be rearranged at runtime. To enforce consistency between tiles, we introduce constraint reduction. This technique modifies a reduced model so that a given set of linear constraints can be fulfilled. Because dynamics and constraints can be solved entirely in the reduced space, our method is extremely fast and scales to large domains.

Skip Supplemental Material Section

Supplemental Material

tps025_09.mp4

References

  1. Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. In Proc. SIGGRAPH '07. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Angelidis, A., and Neyret, F. 2005. Simulation of smoke based on vortex filament primitives. In Proc. SCA '05. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Angelidis, A., Neyret, F., Singh, K., and Nowrouzezahrai, D. 2006. A controllable, fast and stable basis for vortex based smoke simulation. In Proc. SCA '06. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ausseur, J., Pinier, J., Glauser, M., and Higuchi, H. 2004. Predicting the Dynamics of the Flow over a NACA 4412 using POD. APS Meeting Abstracts, D8.Google ScholarGoogle Scholar
  5. Babuška, I. 1973. The finite element method with Lagrangian multipliers. Numer. Math. 20, 3.Google ScholarGoogle Scholar
  6. Barbič, J., and James, D. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. In Proc. SIGGRAPH '05. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Barbič, J., and Popović, J. 2008. Real-time control of physically based simulations using gentle forces. ACM Transactions on Graphics 27, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bolz, J., Farmer, I., Grinspun, E., and Schröder, P. 2003. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. In Proc. SIGGRAPH '03. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Borggaard, J., Gugercin, S., and Iliescu, T. 2006. A domain decomposition approach to POD. IEEE Conference on Decision and Control.Google ScholarGoogle Scholar
  10. Chenney, S. 2004. Flow tiles. In Proc. SCA '04. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cohen, M. F., Shade, J., Hiller, S., and Deussen, O. 2003. Wang tiles for image and texture generation. In Proc. SIGGRAPH '03. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Couplet, M., Basdevant, C., and Sagaut, P. 2005. Calibrated reduced-order POD-Galerkin system for fluid flow modelling. J. Comput. Phys. 207, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M. 2005. Stable, circulation-preserving, simplicial fluids. In Discrete Differential Geometry, Chapter 9 of Course Notes. ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Farhat, C., Tezaur, R., and Toivanen, J. 2000. A domain decomposition method for discontinuous Galerkin discretizations of Helmholtz problems with plane waves and Lagrange multipliers. Int. J. Numer. Meth. Engng.Google ScholarGoogle Scholar
  15. Farhat, C., Harari, I., and Franca, L. P. 2001. The discontinuous enrichment method. Comput. Methods Appl. Mech. Engrg. 190.Google ScholarGoogle Scholar
  16. Farhat, C., Harari, I., and Hetmaniuk, U. 2003. A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Applied Mechanics and Engineering 192, 1389--1419.Google ScholarGoogle ScholarCross RefCross Ref
  17. Feldman, B. E., O'Brien, J. F., and Klingner, B. M. 2005. Animating gases with hybrid meshes. In Proc. SIGGRAPH '05. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graphical Models and Image Processing 58, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Goodnight, N., Woolley, C., Luebke, D., and Humphreys, G. A. 2003. Multigrid solver for boundary value problems using programmable graphics hardware. In Proceeding of Graphics Hardware. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Harris, M. J., Coombe, G., Scheuermann, T., and Lastra, A. 2002. Physically-based visual simulation on graphics hardware. In Graphics Hardware 2002, 109--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Holmes, P., Lumley, J. L., and Berkooz, G. 1996. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press.Google ScholarGoogle Scholar
  22. James, D. L., and Fatahalian, K. 2003. Precomputing interactive dynamic deformable scenes. In Proc. SIGGRAPH '03. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutre, P., and Gross, M. 2005. A unified lagrangian approach to solidfluid animation. In Proceedings Symposium Point-Based Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Krüger, J., and Westermann, R. 2003. Linear algebra operators for GPU implementation of numerical algorithms. In Proc. SIGGRAPH '03. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. LeGresley, P. A., and Alonso, J. J. 2003. Dynamic domain decomposition and error correction for reduced order models. 41st AIAA Aerospace Sciences Meeting and Exhibit.Google ScholarGoogle Scholar
  26. Li, W., Wei, X., and Kaufman, A. 2003. Implementing lattice Boltzmann computation on graphics hardware. The Visual Computer 19, 7--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. In Proc. SIGGRAPH '04. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lucia, D. J., and King, P. I. 2002. Domain decomposition for reduced-order modeling of a flow with moving shocks. AIAA Journal 40, 11, 2360--2362.Google ScholarGoogle ScholarCross RefCross Ref
  29. Lumley, J. L. 1970. Stochastic Tools in Turbulence, vol. 12 of Applied Mathematics and Mechanics. Academic Press.Google ScholarGoogle Scholar
  30. Marion, M., and Temam, R. 1989. Nonlinear Galerkin methods. SIAM J. Numer. Anal. 26, 5, 1139--1157. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Müller, M., Charypar, D., and Gross, M. 2003. Particle-Based Fluid Simulation for Interactive Applications. In Proc. SCA '03. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Park, S. I., and Kim, M. J. 2005. Vortex fluid for gaseous phenomena. In Proc. SCA '05. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Rowley, C., Williams, D., Colonius, T., Murray, R., and MacMartin, D. 2006. Linear models for control of cavity flow oscillations. J. Fluid Mech. 547, 317--330.Google ScholarGoogle ScholarCross RefCross Ref
  34. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. In Proc. SIGGRAPH '05. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Shewchuk, J. R. 1994. An introduction to the conjugate gradient method without the agonizing pain. Tech. Rep. CS-94-125, Carnegie Mellon University, Pittsburgh, PA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sirisup, S., and Karniadakis, G. E. 2004. A spectral viscosity method for correcting the long-term behavior of POD models. J. Comput. Phys. 194, 1, 92--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Sirovich, L. 1987. Turbulence and the dynamics of coherent structures. I - Coherent structures. II - Symmetries and transformations. III - Dynamics and scaling. Quarterly of Applied Mathematics 45 (Oct.), 561--571.Google ScholarGoogle ScholarCross RefCross Ref
  38. Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, lowfrequency lighting environments. In Proc. SIGGRAPH '02. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Stam, J. 1999. Stable Fluids. In Computer Graphics (SIGGRAPH 99). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Tezaur, R., and Farhat, C. 2006. Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problems. Int. J. Numer. Meth. Engng 66.Google ScholarGoogle Scholar
  41. Tezaur, R., Zhang, L., and Farhat, C. 2008. A discontinuous enrichment method for capturing evanescent waves in multiscale fluid and fluid/solid problems. Comput. Methods Appl. Mech. Engrg. 197.Google ScholarGoogle Scholar
  42. Toselli, A., and Widlund, O. 2005. Domain Decomposition Methods - Algorithms and Theory. Springer.Google ScholarGoogle Scholar
  43. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. In Proc. SIGGRAPH '06. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Wu, E., Liu, Y., and Liu, X. 2005. An improved study of realtime fluid simulation on GPU. Computer Animation and Virtual Worlds 15, 3--4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Zhang, L., Tezaur, R., and Farhat, C. 2006. The discontinuous enrichment method for elastic wave propagation in the medium-frequency regime. Internat. J. Numer. Methods Engrg. 66.Google ScholarGoogle Scholar
  46. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. In Proc. SIGGRAPH '05. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Modular bases for fluid dynamics

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 28, Issue 3
        August 2009
        750 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/1531326
        Issue’s Table of Contents

        Copyright © 2009 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2009
        Published in tog Volume 28, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader