skip to main content
research-article

Predictive-corrective incompressible SPH

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

We present a novel, incompressible fluid simulation method based on the Lagrangian Smoothed Particle Hydrodynamics (SPH) model. In our method, incompressibility is enforced by using a prediction-correction scheme to determine the particle pressures. For this, the information about density fluctuations is actively propagated through the fluid and pressure values are updated until the targeted density is satisfied. With this approach, we avoid the computational expenses of solving a pressure Poisson equation, while still being able to use large time steps in the simulation. The achieved results show that our predictive-corrective incompressible SPH (PCISPH) method clearly outperforms the commonly used weakly compressible SPH (WCSPH) model by more than an order of magnitude while the computations are in good agreement with the WCSPH results.

Skip Supplemental Material Section

Supplemental Material

tps028_09.mp4

References

  1. Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. ACM Trans. Graph. 26, 3, 48--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Batchelor, G. 1967. An Introduction to Fluid Dynamics. Cambridge University Press.Google ScholarGoogle Scholar
  3. Becker, M., and Teschner, M. 2007. Weakly compressible SPH for free surface flows. In Symposium on Computer Animation, 209--217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Becker, M., Tessendorf, H., and Teschner, M. 2009. Direct forcing for Lagrangian rigid-fluid coupling. IEEE Transactions on Visualization and Computer Graphics 15, 3, 493--503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Courant, R., Friedrichs, K., and Lewy, H. 1967. On the partial difference equations of mathematical physics. IBM J. 11, 215--234.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cummins, S. J., and Rudman, M. 1999. An SPH projection method. J. Comput. Phys. 152, 2, 584--607. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Desbrun, M., and Cani, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Eurographics Workshop on Computer Animation and Simulation, 61--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. 21, 3, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hu, X. Y., and Adams, N. A. 2007. An incompressible multiphase SPH method. J. Comput. Phys. 227, 1, 264--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Liu, S. K., and Oka, Y. 2005. A hybrid particle-mesh method for viscous, incompressible, multiphase flows. J. Comput. Phys. 202, 1, 65--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutre, P., and Gross, M. 2005. A unified Lagrangian approach to solidfluid animation. In Proceedings of Eurographics Symposium on Point-Based Graphics, 125--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Lenaerts, T., Adams, B., and Dutré, P. 2008. Porous flow in particle-based fluid simulations. ACM Trans. Graph. 27, 3, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Losasso, F., Talton, J., Kwatra, J., and Fedkiw, R. 2008. Two-way coupled SPH and particle level set fluid simulation. IEEE TVCG 14, 4, 797--804. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Monaghan, J. 1992. Smoothed particle hydrodynamics. Annu. Rev. Astron. Physics 30, 543.Google ScholarGoogle ScholarCross RefCross Ref
  15. Monaghan, J. 2005. Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703--1759.Google ScholarGoogle ScholarCross RefCross Ref
  16. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Symposium on Computer Animation, 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In Symposium on Computer Animation, 141--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Müller, M., Schirm, S., Teschner, M., Heidelberger, B., and Gross, M. 2004. Interaction of fluids with deformable solids. Journal of Computer Animation and Virtual Worlds 15, 3--4, 159--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Müller, M., Solenthaler, B., Keiser, R., and Gross, M. 2005. Particle-based fluid-fluid interaction. In Symposium on Computer Animation, 237--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. T. 2003. Particle-based simulation of fluids. In Proceedings of Eurographics, 401--410.Google ScholarGoogle Scholar
  21. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. 24, 3, 910--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Shao, S. 2006. Incompressible SPH simulation of wave breaking and overtopping with turbulence modelling. Int. J. Numer. Meth. Fluids 50, 597--621.Google ScholarGoogle ScholarCross RefCross Ref
  23. Solenthaler, B., and Pajarola, R. 2008. Density contrast SPH interfaces. In Symposium on Computer Animation, 211--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Solenthaler, B., Schläfli, J., and Pajarola, R. 2007. A unified particle model for fluid-solid interactions. Journal of Computer Animation and Virtual Worlds 18, 1, 69--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Thürey, N., Keiser, R., Pauly, M., and Rüde, U. 2006. Detail-preserving fluid control. In Symposium on Computer Animation, 7--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3, 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Predictive-corrective incompressible SPH

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 28, Issue 3
          August 2009
          750 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1531326
          Issue’s Table of Contents

          Copyright © 2009 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 July 2009
          Published in tog Volume 28, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader