skip to main content
research-article

NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

We present a subdivision framework that adds extraordinary vertices to NURBS of arbitrarily high degree. The surfaces can represent any odd degree NURBS patch exactly. Our rules handle non-uniform knot vectors, and are not restricted to midpoint knot insertion. In the absence of multiple knots at extraordinary points, the limit surfaces have bounded curvature.

Skip Supplemental Material Section

Supplemental Material

tps085_09.mp4

References

  1. Augsdörfer, U. H., Dodgson, N. A., and Sabin, M. A. 2006. Tuning Subdivision by Minimising Gaussian Curvature Variation Near Extraordinary Vertices. Comp. Graph. Forum 25, 3, 263--272.Google ScholarGoogle ScholarCross RefCross Ref
  2. Augsdörfer, U. H., Cashman, T. J., Dodgson, N. A., and Sabin, M. A. 2009. Numerical Checking of C1 for Arbitrary Degree Quadrilateral Subdivision Schemes. In 13th IMA Conference on the Mathematics of Surfaces, Springer. To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Barthe, L., and Kobbelt, L. 2004. Subdivision scheme tuning around extraordinary vertices. CAGD 21, 6, 561--583. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Boehm, W. 1980. Inserting new knots into B-spline curves. Computer-Aided Design 12, 4, 199--201.Google ScholarGoogle ScholarCross RefCross Ref
  5. Cashman, T. J., Dodgson, N. A., and Sabin, M. A. 2009. Selective knot insertion for symmetric, non-uniform refine and smooth B-spline subdivision. CAGD 26, 4, 472--479. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Catmull, E., and Clark, J. 1978. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 6, 350--355.Google ScholarGoogle ScholarCross RefCross Ref
  7. Cohen, E., Lyche, T., and Riesenfeld, R. 1980. Discrete B-splines and Subdivision Techniques in Computer-Aided Geometric Design and Computer Graphics. Computer Graphics and Image Processing 14, 2, 87--111.Google ScholarGoogle ScholarCross RefCross Ref
  8. DeRose, T., Kass, M., and Truong, T. 1998. Subdivision surfaces in character animation. In Proc. SIGGRAPH 98, 85--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Farin, G. 2001. Curves and Surfaces for CAGD: A Practical Guide, 5th ed. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Galil, Z., and Italiano, G. 1991. Data structures and algorithms for disjoint set union problems. ACM Computing Surveys 23, 3, 319--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ginkel, I., and Umlauf, G. 2006. Loop subdivision with curvature control. In Eurographics Symposium on Geom. Proc., Eurographics, K. Polthier and A. Sheffer, Eds., 163--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gonsor, D., and Neamtu, M. 2001. Subdivision Surfaces -- Can they be Useful for Geometric Modeling Applications? Tech. Rep. 01--011, The Boeing Company.Google ScholarGoogle Scholar
  13. Holt, F. 1996. Toward a curvature-continuous stationary subdivision algorithm. Zeitschrift für angewandte Mathematik und Mechanik 76, 423--424.Google ScholarGoogle Scholar
  14. Karciauskas, K., Peters, J., and Reif, U. 2004. Shape characterization of subdivision surfaces-case studies. CAGD 21, 6, 601--614. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Lane, J. M., and Riesenfeld, R. F. 1980. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces. IEEE Trans. PAMI 2, 1, 35--46.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Levin, A. 2006. Modified subdivision surfaces with continuous curvature. ACM Trans. Graph. 25, 3, 1035--1040. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Loop, C. 2002. Bounded curvature triangle mesh subdivision with the convex hull property. The Visual Computer 18, 316--325.Google ScholarGoogle ScholarCross RefCross Ref
  18. Ma, W. 2005. Subdivision surfaces for CAD---an overview. Computer-Aided Design 37, 7, 693--709. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Müller, K., Reusche, L., and Fellner, D. 2006. Extended subdivision surfaces: Building a bridge between NURBS and Catmull-Clark surfaces. ACM Trans. Graph. 25, 2, 268--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Peters, J., and Reif, U. 2008. Subdivision Surfaces. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Prautzsch, H. 1997. Freeform splines. CAGD 14, 3, 201--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Prautzsch, H. 1998. Smoothness of subdivision surfaces at extraordinary points. Adv. in Comp. Math. 9, 3, 377--389.Google ScholarGoogle ScholarCross RefCross Ref
  23. Ramshaw, L. 1989. Blossoms are polar forms. CAGD 6, 4, 323--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Reif, U. 1996. A Degree Estimate for Subdivision Surfaces of Higher Regularity. Proc. Amer. Math. Soc. 124, 7, 2167--2174.Google ScholarGoogle ScholarCross RefCross Ref
  25. Reif, U. 1998. TURBS---Topologically Unrestricted Rational B-Splines. Constructive Approximation 14, 1, 57--77.Google ScholarGoogle ScholarCross RefCross Ref
  26. Sabin, M. A., Dodgson, N. A., Hassan, M. F., and Ivrissimtzis, I. P. 2003. Curvature behaviours at extraordinary points of subdivision surfaces. Computer-Aided Design 35, 11, 1047--1051.Google ScholarGoogle ScholarCross RefCross Ref
  27. Sabin, M. 1991. Cubic recursive division with bounded curvature. In Curves and surfaces, Academic Press, 411--414. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Schaefer, S., and Goldman, R. 2009. Non-uniform Subdivision for B-splines of Arbitrary Degree. CAGD 26, 1, 75--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Sederberg, T. W., Zheng, J., Sewell, D., and Sabin, M. 1998. Non-Uniform Recursive Subdivision Surfaces. In Proc. SIGGRAPH 98, 387--394. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sederberg, T. W., Zheng, J., Bakenov, A., and Nasri, A. 2003. T-splines and T-NURCCs. ACM Trans. Graph. 22, 3, 477--484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Stam, J. 1998. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. In Proc. SIGGRAPH 98, 395--404. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Stam, J. 2001. On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree. CAGD 18, 5, 383--396. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Warren, J., and Weimer, H. 2001. Subdivision Methods for Geometric Design. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Zorin, D., and Schröder, P. 2001. A unified framework for primal/dual quadrilateral subdivision schemes. CAGD 18, 5, 429--454. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 28, Issue 3
        August 2009
        750 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/1531326
        Issue’s Table of Contents

        Copyright © 2009 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2009
        Published in tog Volume 28, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader