skip to main content
research-article

Bi-3 C2 polar subdivision

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

Popular subdivision algorithms like Catmull-Clark and Loop are C2 almost everywhere, but suffer from shape artifacts and reduced smoothness exactly near the so-called "extraordinary vertices" that motivate their use. Subdivision theory explains that inherently, for standard stationary subdivision algorithms, curvature-continuity and the ability to model all quadratic shapes requires a degree of at least bi-6. The existence of a simple-to-implement C2 subdivision algorithm generating surfaces of good shape and piecewise degree bi-3 in the polar setting is therefore a welcome surprise. This paper presents such an algorithm, the underlying insights, and a detailed analysis. In bi-3 C2 polar subdivision the weights depend, as in standard schemes, only on the valence, but the valence at one central polar vertex increases to match Catmull-Clark-refinement.

Skip Supplemental Material Section

Supplemental Material

tps088_09.mp4

References

  1. Catmull, E., and Clark, J. 1978. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design 10, 350--355.Google ScholarGoogle ScholarCross RefCross Ref
  2. Choi, Y.-J., Lee, Y. J., Yoon, J., Lee, B.-G., and Kim, Y. J. 2006. A new class of non-stationary interpolatory subdivision schemes based on exponential polynomials. In Geometric Modeling and Processing, 563--570. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Farin, G. 1997. Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide, fourth ed. Academic Press, San Diego, CA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Karčiauskas, K., Myles, A., and Peters, J. 2006. A C 2 polar jet subdivision. In SGP '06: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 173--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Karčiauskas, K., and Peters, J. 2007. Concentric tessellation maps and curvature continuous guided surfaces. Comput. Aided Geom. Des. 24, 2, 99--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Karčiauskas, K., and Peters, J. 2007. On the curvature of guided surfaces. Tech. rep., University of Florida CISE, REP-2007-430, Gainesville, FL, USA.Google ScholarGoogle Scholar
  7. Karčiauskas, K., and Peters, J. 2007. Bicubic polar subdivision. ACM Trans. Graph. 26, 4, 14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Karčiauskas, K., and Peters, J. 2008. On the curvature of guided surfaces. Comput. Aided Geom. Des. 25, 2, 69--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Levin, A. 2006. Modified subdivision surfaces with continuous curvature. In SIGGRAPH '06: ACM SIGGRAPH 2006 Papers, ACM Press, New York, NY, USA, 1035--1040. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Loop, C. T., and Schaefer, S. 2008. G 2 tensor product splines over extraordinary vertices. Computer Graphics Forum (Proceedings of 2008 Symposium on Geometry Processing) 27, 5, 1373--1382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Loop, C. T. 2004. Second order smoothness over extraordinary vertices. In SGP '04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, ACM, New York, NY, USA, 165--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Lutterkort, D., and Peters, J. 2001. Tight linear envelopes for splines. Numerische Mathematik 89, 4 (Oct), 735--748.Google ScholarGoogle ScholarCross RefCross Ref
  13. Morin, G., Warren, J. D., and Weimer, H. 2001. A subdivision scheme for surfaces of revolution. Comput. Aided Geom. Des. 18, 5, 483--502. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Myles, A., Karčiauskas, K., and Peters, J. 2008. Pairs of bi-cubic surface constructions supporting polar connectivity. Comput. Aided Geom. Des. 25, 8, 621--630. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Myles, A. 2008. Curvature-continuous bicubic subdivision surfaces for polar configurations. PhD thesis, University of Florida, Gainesville, Florida. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Peters, J., and Reif, U. 2008. Subdivision Surfaces. Geometry and Computing, Vol. 3. Springer-Verlag New York, Inc., New York, NY, USA, Apr. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Peters, J. 2002. C 2 free-form surfaces of degree (3,5). Comput. Aided Geom. Des. 19, 2, 113--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Prautzsch, H., and Reif, U. 1999. Degree estimates for C k-piecewise polynomial subdivision surfaces. Advances in Computational Mathematics 10, 2, 209--217.Google ScholarGoogle ScholarCross RefCross Ref
  19. Prautzsch, H., and Reif, U. 1999. Necessary conditions for subdivision surfaces. Advances in Computational Mathematics 10, 209--217.Google ScholarGoogle ScholarCross RefCross Ref
  20. Prautzsch, H., and Umlauf, G. 1998. A G 2-subdivision algorithm. In Geometric Modeling, Dagstuhl, Germany, 1996, Springer-Verlag, London, UK, 217--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Prautzsch, H., Boehm, W., and Paluszny, M. 2002. Bezier and B-Spline Techniques. Springer-Verlag New York, Inc., Secaucus, NJ, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Prautzsch, H. 1997. Freeform splines. Comput. Aided Geom. Des. 14, 3, 201--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Reif, U. 1998. TURBS---topologically unrestricted rational B-splines. Constructive Approximation. An International Journal for Approximations and Expansions 14, 1, 57--77.Google ScholarGoogle Scholar
  24. Wallner, J., and Dyn, N. 2005. Convergence and C 1 analysis of subdivision schemes on manifolds by proximity. Comput. Aided Geom. Des. 22, 7, 593--622. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ying, L., and Zorin, D. 2004. A simple manifold-based construction of surfaces of arbitrary smoothness. ACM Trans. Graph. 23, 3 (Aug.), 271--275. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Zhang, H., and Wang, G. 2002. Semi-stationary subdivision operators in geometric modeling. Progress in National Science 12, 10, 772--776.Google ScholarGoogle Scholar
  27. Zorin, D. 2006. Constructing curvature-continuous surfaces by blending. In SGP '06: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 31--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Zulti, A., Levin, A., Levin, D., and Teicher, M. 2006. C 2 subdivision over triangulations with one extraordinary point. Comput. Aided Geom. Des. 23, 2, 157--178. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Bi-3 C2 polar subdivision

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 28, Issue 3
        August 2009
        750 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/1531326
        Issue’s Table of Contents

        Copyright © 2009 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2009
        Published in tog Volume 28, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader