skip to main content
research-article

Enrichment textures for detailed cutting of shells

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

We present a method for simulating highly detailed cutting and fracturing of thin shells using low-resolution simulation meshes. Instead of refining or remeshing the underlying simulation domain to resolve complex cut paths, we adapt the extended finite element method (XFEM) and enrich our approximation by customdesigned basis functions, while keeping the simulation mesh unchanged. The enrichment functions are stored in enrichment textures, which allows for fracture and cutting discontinuities at a resolution much finer than the underlying mesh, similar to image textures for increased visual resolution. Furthermore, we propose harmonic enrichment functions to handle multiple, intersecting, arbitrarily shaped, progressive cuts per element in a simple and unified framework. Our underlying shell simulation is based on discontinuous Galerkin (DG) FEM, which relaxes the restrictive requirement of C1 continuous basis functions and thus allows for simpler, C0 continuous XFEM enrichment functions.

Skip Supplemental Material Section

Supplemental Material

tps065_09.mp4

References

  1. Abdelaziz, Y., and Hamouine, A. 2008. A survey of the extended finite element. Computers and Structures 86, 11--12, 1141--1151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D. 2001. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 5, 1749--1779. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Babuska, I., and Melenk, J. M. 1996. The partition of unity finite element method: Basic theory and applications. Comput. Meth. Appl. Mech. Eng., Special Issue on Meshless Methods 139, 289--314.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bao, Z., Mo Hong, J., Teran, J., and Fedkiw, R. 2007. Fracturing rigid materials. IEEE Transactions on Visualization and Computer Graphics 13, 2, 370--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proc. of ACM SIGGRAPH, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Belytschko, T., and Black, T. 1999. Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 5, 601--620.Google ScholarGoogle ScholarCross RefCross Ref
  7. Bielser, D., Maiwald, V., and Gross, M. 1999. Interactive cuts through 3-dimensional soft tissue. Computer Graphics Forum (Proc. Eurographics) 18, 3, 31--38.Google ScholarGoogle ScholarCross RefCross Ref
  8. Bolz, J., Farmer, I., Grinspun, E., and Schröder, P. 2003. Sparse matrix solvers on the GPU: conjugate gradients and multigrid. ACM Trans. on Graphics (Proc. SIGGRAPH) 22, 3, 917--924. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. of Symp. on Computer Animation '03, 28--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Choi, K.-J., and Ko, H.-S. 2002. Stable but responsive cloth. ACM Trans. on Graphics (Proc. SIGGRAPH) 21, 3, 604--611. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cirak, F., Ortiz, M., and Schröder, P. 2000. Subdivision surfaces: A new paradigm for thin-shell finite-element analysis. Int. J. Numer. Methods Eng. 47, 12, 2039--2072.Google ScholarGoogle ScholarCross RefCross Ref
  12. Cockburn, B. 2003. Discontinuous Galerkin methods. Z. Angew. Math. Mech. 83, 11, 731--754.Google ScholarGoogle ScholarCross RefCross Ref
  13. De Casson, F. B., and Laugier, C. 2000. Simulating 2D tearing phenomena for interactive medical surgery simulators. In Computer Animation 2000, 9--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Desbenoit, B., Galin, E., and Akkouche, S. 2005. Modeling cracks and fractures. The Visual Computer 21, 8--10, 717--726.Google ScholarGoogle ScholarCross RefCross Ref
  15. English, E., and Bridson, R. 2008. Animating developable surfaces using nonconforming elements. ACM Trans. on Graphics (Proc. SIGGRAPH) 27, 3, 1--5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Forest, C., Delingette, H., and Ayache, N. 2002. Removing tetrahedra from a manifold mesh. In Proc. of IEEE Computer Animation, 225--229. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Gingold, Y., Secord, A., Han, J. Y., Grinspun, E., and Zorin, D. 2004. A discrete model for inelastic deformation of thin shells. Tech. rep., Courant Institute of Mathematical Sciences, New York University.Google ScholarGoogle Scholar
  18. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun, E. 2007. Efficient simulation of inextensible cloth. ACM Trans. on Graphics (Proc. SIGGRAPH) 26, 3, 49:1--49:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Gracie, R., Wang, H., and Belytschko, T. 2008. Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods. Int. J. Numer. Methods Eng. 74, 11, 1645--1669.Google ScholarGoogle ScholarCross RefCross Ref
  20. Grinspun, E., Krysl, P., and Schröder, P. 2002. CHARMS: A Simple Framework for adaptive simulation. ACM Trans. on Graphics (Proc. SIGGRAPH) 21, 3, 281--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proc. of Symp. on Computer Animation'03, 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Gu, X., Gortler, S., and Hoppe, H. 2002. Geometry images. ACM Trans. on Graphics (Proc. SIGGRAPH) 21, 3, 355--361. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Guo, X., Li, X., Bao, Y., Gu, X., and Qin, H. 2006. Meshless thin-shell simulation based on global conformal parameterization. IEEE Transactions on Visualization and Computer Graphics 12, 3, 375--385. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Huang, R., Sukumar, N., and Prévost, J. 2003. Modeling quasi-static crack growth with the extended finite element method -- Part II. Int. J. of Solids and Structures 40, 26, 7539--7552.Google ScholarGoogle ScholarCross RefCross Ref
  25. Hughes, T. J. R. 2000. The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. Dover Publications.Google ScholarGoogle Scholar
  26. Jerabkova, L., and Kuhlen, T. 2009. Stable cutting of deformable objects in virtual environments using the XFEM. IEEE Computer Graphics and Applications 29, 2, 61--71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kaufmann, P., Martin, S., Botsch, M., and Gross, M. 2008. Flexible simulation of deformable models using discontinuous Galerkin FEM. In Proc. of Symp. on Computer Animation, 105--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kaufmann, P., Martin, S., Botsch, M., and Gross, M. 2009. Implementation of discontinuous Galerkin Kirchhoff-Love shells. Tech. Rep. no. 622, Department of Computer Science, ETH Zurich.Google ScholarGoogle Scholar
  29. Martin, S., Kaufmann, P., Botsch, M., Wicke, M., and Gross, M. 2008. Polyhedral finite elements using harmonic basis functions. Computer Graphics Forum (Proc. of Symp. on Geometry Processing) 27, 5, 1521--1529. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Moës, N., Dolbow, J., and Belytschko, T. 1999. A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 1, 131--150.Google ScholarGoogle ScholarCross RefCross Ref
  31. Moës, N., Gravouil, A., and Belytschko, T. 2002. Nonplanar 3d crack growth by the extended finite element and level sets - Part I. Int. J. Numer. Methods Eng. 53, 11, 2549--2568.Google ScholarGoogle ScholarCross RefCross Ref
  32. Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. on Graphics (Proc. SIGGRAPH) 23, 3, 385--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Müller, M. 2008. Hierarchical position based dynamics. In Proc. of Virtual Reality Interactions and Physical Simulations.Google ScholarGoogle Scholar
  34. Noels, L., and Radovitzky, R. 2008. A new discontinuous Galerkin method for Kirchhoff-Love shells. Computer Methods in Applied Mechanics and Engineering 197, 2901--2929.Google ScholarGoogle ScholarCross RefCross Ref
  35. Noels, L. 2009. A discontinuous Galerkin formulation of nonlinear Kirchhoff-Love shells. Int. J. Numer. Methods Eng. 78, 3, 296--323.Google ScholarGoogle ScholarCross RefCross Ref
  36. O'Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proc. of ACM SIGGRAPH, 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. on Graphics (Proc. SIGGRAPH) 21, 3, 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Pauly, M., Keiser, R., Adams, B., Dutre, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. on Graphics (Proc. SIGGRAPH) 24, 3, 957--964. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Réthoré, J., Gravouil, A., and Combescure, A. 2005. An energy-conserving scheme for dynamic crack growth using the extended finite element method. Int. J. Numer. Methods Eng. 63, 5, 631--659.Google ScholarGoogle ScholarCross RefCross Ref
  40. Sethian, J. 1999. Level Set Methods and Fast Marching Methods. Cambridge University Press.Google ScholarGoogle Scholar
  41. Sifakis, E., Der, K. G., and Fedkiw, R. 2007. Arbitrary cutting of deformable tetrahedralized objects. In Proc. of Symp. on Computer Animation, 73--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Stazi, F. L., Budyn, E., Chessa, J., and Belytschko, T. 2003. An extended finite element method with higher-order elements for curved cracks. Comput. Mech. 31, 1, 38--48.Google ScholarGoogle ScholarCross RefCross Ref
  43. Steinemann, D., Otaduy, M. A., and Gross, M. 2006. Fast arbitrary splitting of deforming objects. In Proc. of Symp. on Computer Animation, 63--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. In Proc. of ACM SIGGRAPH, 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proc. of ACM SIGGRAPH, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Thomaszewski, B., Wacker, M., and Strasser, W. 2006. A consistent bending model for cloth simulation with corotational subdivision finite elements. In Proc. of Symp. on Computer Animation, 107--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Toledo, S., Chen, D., and Rotkin, V., 2003. Taucs: A library of sparse linear solvers. http://www.tau.ac.il/~stoledo/taucs.Google ScholarGoogle Scholar
  48. Wempner, G., and Talaslidis, D. 2003. Mechanics of solids and shells: theories and approximations. CRC Press.Google ScholarGoogle Scholar
  49. Wicke, M., Steinemann, D., and Gross, M. 2005. Efficient animation of point-sampled thin shells. Computer Graphics Forum (Proc. Eurographics) 24, 667--676.Google ScholarGoogle ScholarCross RefCross Ref
  50. Wicke, M., Botsch, M., and Gross, M. 2007. A finite element method on convex polyhedra. Computer Graphics Forum (Proc. Eurographics) 26, 3, 355--364.Google ScholarGoogle ScholarCross RefCross Ref
  51. Zi, G., and Belytschko, T. 2003. New crack-tip elements for XFEM and applications to cohesive cracks. Int. J. Numer. Methods Eng. 57, 15, 2221--2240.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Enrichment textures for detailed cutting of shells

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 28, Issue 3
            August 2009
            750 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/1531326
            Issue’s Table of Contents

            Copyright © 2009 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 27 July 2009
            Published in tog Volume 28, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader