skip to main content
research-article

Preserving topology and elasticity for embedded deformable models

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

In this paper we introduce a new approach for the embedding of linear elastic deformable models. Our technique results in significant improvements in the efficient physically based simulation of highly detailed objects. First, our embedding takes into account topological details, that is, disconnected parts that fall into the same coarse element are simulated independently. Second, we account for the varying material properties by computing stiffness and interpolation functions for coarse elements which accurately approximate the behaviour of the embedded material. Finally, we also take into account empty space in the coarse embeddings, which provides a better simulation of the boundary. The result is a straightforward approach to simulating complex deformable models with the ease and speed associated with a coarse regular embedding, and with a quality of detail that would only be possible at much finer resolution.

Skip Supplemental Material Section

Supplemental Material

tps067_09.mp4

References

  1. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proceedings of SIGGRAPH 1998, ACM, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Barbič J., and James D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Transactions on Graphics 24, 3, 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bathe, K. 1982. Finite Element Procedures in Engineering Analysis. Prentice-Hall.Google ScholarGoogle Scholar
  4. Belytschko, T., and Black, T. 1999. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45, 5, 601--620.Google ScholarGoogle ScholarCross RefCross Ref
  5. Botsch, M., Pauly, M., Wicke, M., and Gross, M. 2007. Adaptive space deformations based on rigid cells. Computer Graphics Forum 26, 3, 339--347.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bro-Nielsen, M., and Cotin, S. 1996. Real-time volumetric deformable models for surgery simulation using finite elements and condensation. In Computer Graphics Forum, 57--66.Google ScholarGoogle Scholar
  7. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. Interactive skeleton-driven dynamic deformations. ACM Transactions on Graphics 21, 3, 586--593. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Debunne, G., Desbrun, M., Cani, M.-P., and Barr, A. H. 2001. Dynamic real-time deformations using space & time adaptive sampling. In Proceedings of SIGGRAPH 2001, ACM, 31--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 1997. Dynamic free-form deformations for animation synthesis. IEEE Transactions on Visualization and Computer Graphics 3, 3, 201--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Faure, F., Barbier, S., Allard, J., and Falipou, F. 2008. Image-based collision detection and response between arbitrary volumetric objects. In ACM Siggraph/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Galoppo, N., Otaduy, M. A., Mecklenburg, P., Gross, M., and Lin, M. C. 2006. Fast simulation of deformable models in contact using dynamic deformation textures. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 73--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Grinspun, E., Krysl, P., and Schröder, P. 2002. CHARMS: A simple framework for adaptive simulation. ACM Transactions on Graphics 21, 3, 281--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hauth, M., and Strasser, W. 2004. Corotational simulation of deformable solids. In J. Winter School of Computer Graphics, vol. 12, 137--145.Google ScholarGoogle Scholar
  14. Hsu, W. M., Hughes, J. F., and Kaufman, H. 1992. Direct manipulation of free-form deformations. In Computer Graphics (Proceedings of SIGGRAPH 92), ACM Press, New York, NY, USA, 177--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. James, D. L., and Pai, D. K. 1999. ArtDefo: Accurate real time deformable objects. In Proceedings of SIGGRAPH 1999, ACM Press / ACM SIGGRAPH, 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. James, D. L., and Pai, D. K. 2003. Multiresolution Green's function methods for interactive simulation of large-scale elastostatic objects. ACM Transactions on Graphics 22, 1, 47--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. James, D. L., Barbič, J., and Twigg, C. D. 2004. Squashing cubes: Automating deformable model construction for graphics. In ACM SIGGRAPH Conference on Sketches & Applications. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jeřábková, L., and Kuhlen, T. 2009. Stable cutting of deformable objects in virtual environments using XFEM. In IEEE Computer Graphics and Applications, vol. 29, 61--71.Google ScholarGoogle ScholarCross RefCross Ref
  19. Kaufmann, P., Martin, S., Botsch, M., and Gross, M. 2008. Flexible simulation of deformable models using discontinuous Galerkin FEM. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 105--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Marchal, M., Allard, J., Duriez, C., and Cotin, S. 2008. Towards a framework for assessing deformable models in medical simulation. In International Symposium on Biomedical Simulation, 176--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Martin, S., Kaufmann, P., Botsch, M., Wicke, M., and Gross, M. 2008. Polyhedral finite elements using harmonic basis functions. Computer Graphics Forum 27, 5, 1521--1529.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Transactions on Graphics 23, 3, 385--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 49--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Müller, M., Teschner, M., and Gross, M. 2004. Physically-based simulation of objects represented by surface meshes. In IEEE Computer Graphics International, 26--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. ACM Transactions on Graphics 24, 3, 471--478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. 2006. Position based dynamics. In Eurographics Virtual Reality Interactions and Physical Simulations, 71--80.Google ScholarGoogle Scholar
  27. Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. 2005. Physically based deformable models in computer graphics. In Computer Graphics Forum, vol. 25 (4), 809--836.Google ScholarGoogle ScholarCross RefCross Ref
  28. Nesme, M., Payan, Y., and Faure, F. 2006. Animating shapes at arbitrary resolution with non-uniform stiffness. In Eurographics Virtual Reality Interactions and Physical Simulations.Google ScholarGoogle Scholar
  29. Pauly, M., Pai, D. K., and Guibas, L. J. 2004. Quasi-rigid objects in contact. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 109--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rivers, A. R., and James, D. L. 2007. FastLSM: Fast lattice shape matching for robust real-time deformation. ACM Transactions on Graphics 26, 3, 82:1--82:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. In Computer Graphics (Proceedings of SIGGRAPH 86), ACM, 151--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sifakis, E., Der, K. G., and Fedkiw, R. 2007. Arbitrary cutting of deformable tetrahedralized objects. In ACM SIGGRAPH/Eurographics Symp. on Computer Animation, 73--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007. Hybrid simulation of deformable solids. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 81--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Computer Graphics (Proceedings of SIGGRAPH 87), ACM, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Teschner, M., Heidelberger, B., Müller, M., and Gross, M. 2004. A versatile and robust model for geometrically complex deformable solids. In Computer Graphics International, 312--319. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Wicke, M., Botsch, M., and Gross, M. 2007. A finite element method on convex polyhedra. Computer Graphics Forum 26, 3, 355--364.Google ScholarGoogle ScholarCross RefCross Ref
  37. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Transactions on Graphics 27, 3, 47:1--47:8. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Preserving topology and elasticity for embedded deformable models

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 28, Issue 3
      August 2009
      750 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/1531326
      Issue’s Table of Contents

      Copyright © 2009 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 July 2009
      Published in tog Volume 28, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader