skip to main content
research-article

Procedural noise using sparse Gabor convolution

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

Noise is an essential tool for texturing and modeling. Designing interesting textures with noise calls for accurate spectral control, since noise is best described in terms of spectral content. Texturing requires that noise can be easily mapped to a surface, while high-quality rendering requires anisotropic filtering. A noise function that is procedural and fast to evaluate offers several additional advantages. Unfortunately, no existing noise combines all of these properties.

In this paper we introduce a noise based on sparse convolution and the Gabor kernel that enables all of these properties. Our noise offers accurate spectral control with intuitive parameters such as orientation, principal frequency and bandwidth. Our noise supports two-dimensional and solid noise, but we also introduce setup-free surface noise. This is a method for mapping noise onto a surface, complementary to solid noise, that maintains the appearance of the noise pattern along the object and does not require a texture parameterization. Our approach requires only a few bytes of storage, does not use discretely sampled data, and is nonperiodic. It supports anisotropy and anisotropic filtering. We demonstrate our noise using an interactive tool for noise design.

Skip Supplemental Material Section

Supplemental Material

tps012_09.mp4

References

  1. Abramowitz, M., and Stegun, I. A. 1964. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, ninth Dover printing ed. Dover. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Borosh, I., and Niederreiter, H. 1983. Optimal multipliers for pseudo-random number generation by the linear congruential method. BIT Numerical Mathematics 23, 1, 65--74.Google ScholarGoogle ScholarCross RefCross Ref
  3. Bracewell, R. N. 1999. The Fourier Transform and its Applications, 3rd ed. McGraw-Hill.Google ScholarGoogle Scholar
  4. Bridson, R., Houriham, J., and Nordenstam, M. 2007. Curl-noise for procedural fluid flow. ACM Trans. Graphics 26, 3, 46:1--46:3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cook, R. L., and DeRose, T. 2005. Wavelet noise. ACM Trans. Graphics 24, 3, 803--811. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ebert, D. S., Musgrave, F. K., Peachey, D., Perlin, K., and Worley, S. 2002. Texturing and Modeling: A Procedural Approach, 3rd ed. Morgan Kaufmann Publishers, Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Fisher, M., Schröder, P., Desbrun, M., and Hoppe, H. 2007. Design of tangent vector fields. ACM Trans. Graphics 26, 3, 56:1--56:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Frisvad, J. R., and Wyvill, G. 2007. Fast high-quality noise. In Proc. 5th international conference on Computer graphics and interactive techniques, 243--248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gabor, D. 1946. Theory of communication. J. Int. Electrical Engineers 93, 429--457.Google ScholarGoogle Scholar
  10. Goldberg, A., Zwicker, M., and Durand, F. 2008. Anisotropic noise. ACM Trans. Graphics 27, 3, 54:1--54:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hart, J. C., Carr, N., and Kameya, M. 1999. Antialiased parameterized solid texturing simplified for consumerlevel hardware implementation. In Proc. ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, 45--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hart, J. C. 2001. Perlin noise pixel shaders. In Proc. ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, 87--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Heckbert, P. S. 1989. Fundamentals of Texture Mapping and Image Warping. Master's thesis.Google ScholarGoogle Scholar
  14. Igehy, H. 1999. Tracing ray differentials. In Proc. ACM SIGGRAPH 1999, 179--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kensler, A., Knoll, A., and Shirley, P. 2008. Better gradient noise. Tech. Rep. UUSCI-2008-001, SCI Institute, University of Utah.Google ScholarGoogle Scholar
  16. Knuth, D. E. 1997. The Art of Computer Programming, 3rd ed., vol. 2. Addison-Wesley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lefebvre, S., Hornus, S., and Neyret, F. 2005. Texture sprites: Texture elements splatted on surfaces. In Proc. 2005 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 163--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lewis, J.-P. 1984. Texture synthesis for digital painting. In Computer Graphics (Proc. ACM SIGGRAPH 84), vol. 18, 245--252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lewis, J. P. 1989. Algorithms for solid noise synthesis. In Computer Graphics (Proc. ACM SIGGRAPH 89), vol. 23, 263--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Morton, G. M. 1966. A computer oriented geodetic data base and a new technique in file sequencing. Tech. rep., IBM Ltd.Google ScholarGoogle Scholar
  21. Navarro, R., and Portilla, J. 1996. Robust method for texture synthesis-by-analysis based on a multiscale Gabor scheme. In Proc. SPIE, 86--97.Google ScholarGoogle Scholar
  22. Olano, M., Hart, J. C., Heidrich, W., Mark, B., and Perlin, K., 2002. Real-time shading languages. SIGGRAPH 2002 Course 36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Olano, M. 2005. Modified noise for evaluation on graphics hardware. In Proc. ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, 105--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Papoulis, A., and Pillai, U. 2002. Probability, Random Variables and Stochastic Processes, 4rd ed. McGraw-Hill.Google ScholarGoogle Scholar
  25. Papoulis, A. 1971. High density shot noise and Gaussianity. J. Applied Probability 8, 1, 118--127.Google ScholarGoogle ScholarCross RefCross Ref
  26. Peachy, D. R. 1985. Solid texturing of complex surfaces. In Computer Graphics (Proc. ACM SIGGRAPH 85), vol. 19, 279--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Perlin, K., and Hoffert, E. M. 1989. Hypertexture. In Computer Graphics (Proc. ACM SIGGRAPH 89), vol. 23, 253--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Perlin, K. 1985. An image synthesizer. In Computer Graphics (Proc. ACM SIGGRAPH 85), vol. 19, 287--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Perlin, K. 2002. Improving noise. In Proc. ACM SIGGRAPH 2002, 681--682. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Tzeng, S., and Wei, L.-Y. 2008. Parallel white noise generation on a GPU via cryptographic hash. In Proc. 2008 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 79--87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. van Etten, W. C. 2005. Introduction to Random Signals and Noise. Wiley.Google ScholarGoogle Scholar
  32. van Wijk, J. J. 1991. Spot noise texture synthesis for data visualization. In Computer Graphics (Proc. ACM SIGGRAPH 91), vol. 25, 309--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Worley, S. 1996. A cellular texture basis function. In Proc. ACM SIGGRAPH 1996, 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Zhang, E., Hays, J., and Turk, G. 2007. Interactive tensor field design and visualization on surfaces. IEEE Trans. Visualization and Computer Graphics 13, 1, 94--107. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Procedural noise using sparse Gabor convolution

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 28, Issue 3
      August 2009
      750 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/1531326
      Issue’s Table of Contents

      Copyright © 2009 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 July 2009
      Published in tog Volume 28, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader