skip to main content
research-article

Self-organizing tree models for image synthesis

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

We present a method for generating realistic models of temperate-climate trees and shrubs. This method is based on the biological hypothesis that the form of a developing tree emerges from a self-organizing process dominated by the competition of buds and branches for light or space, and regulated by internal signaling mechanisms. Simulations of this process robustly generate a wide range of realistic trees and bushes. The generated forms can be controlled with a variety of interactive techniques, including procedural brushes, sketching, and editing operations such as pruning and bending of branches. We illustrate the usefulness and versatility of the proposed method with diverse tree models, forest scenes, animations of tree development, and examples of combined interactive-procedural tree modeling.

Skip Supplemental Material Section

Supplemental Material

tps016_09.mp4

References

  1. Anastacio, F., Costa Sousa, M., Samavati, F., and Jorge, J. 2006. Modeling plant structures using concept sketches. Proceedings of NPAR 2006, 105--113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Aono, M., and Kunii, T. L. 1984. Botanical tree image generation. IEEE Computer Graphics and Applications 4, 5, 10--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Arvo, J., and Kirk, D. 1988. Modeling plants with environment-sensitive automata. Proceedings of Ausgraph 1988, 27--33.Google ScholarGoogle Scholar
  4. Bangerth, F. 1989. Dominance among fruits/sinks and the search for a correlative signal. Physiologia Plantarum 76, 608--614.Google ScholarGoogle ScholarCross RefCross Ref
  5. Barthélémy, D., and Caraglio, Y. 2007. Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure, and ontology. Annals of Botany 99, 375--407.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bell, A. 1991. Plant form: An illustrated guide to flowering plants. Oxford University Press, Oxford.Google ScholarGoogle Scholar
  7. Beneš, B., and Millan, E. 2002. Virtual climbing plants competing for space. IEEE Computer Animation 2002, 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bloomenthal, J. 1985. Modeling the Mighty Maple. Computer Graphics 19, 3, 305--311. Proceedings of SIGGRAPH 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Borchert, R., and Honda, H. 1984. Control of development in the bifurcating branch system of Tabebuia rosea: A computer simulation. Botanical Gazette 145, 2, 184--195.Google ScholarGoogle ScholarCross RefCross Ref
  10. Borchert, R., and Slade, N. 1981. Bifurcation ratios and the adaptive geometry of trees. Botanical Gazette 142, 3, 394--401.Google ScholarGoogle ScholarCross RefCross Ref
  11. Bornhofen, S., and Lattaud, C. 2008. Competition and evolution in virtual plant communities: a new modeling approach. Natural Computing. In press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Boudon, F., Prusinkiewicz, P., Federl, P., Godin, C., and Karwowski, R. 2003. Interactive design of bonsai tree models. Computer Graphics Forum 22, 3, 591--599. Proceedings of Eurographics 2003.Google ScholarGoogle ScholarCross RefCross Ref
  13. Chiba, N., Ohkawa, S., Muraoka, K., and Miura, M. 1994. Visual simulation of botanical trees based on virtual heliotropism and dormancy break. The Journal of Visualization and Computer Animation 5, 1, 3--15.Google ScholarGoogle ScholarCross RefCross Ref
  14. Cieslak, M., Lemieux, C., Hanan, J., and Prusinkiewicz, P. 2008. Quasi-Monte-Carlo simulation of the light environment of plants. Functional Plant Biology 35, 9/10, 837--849.Google ScholarGoogle Scholar
  15. Cohen, J., Markosian, L., Zeleznik, R., Hughes, J., and Barzel, R. 1999. An interface for sketching 3D curves. Proceedings of the 1999 ACM Symposium on Interactive 3D Graphics, 17--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Cohen, D. 1967. Computer simulation of biological pattern generation processes. Nature 216, 246--248.Google ScholarGoogle ScholarCross RefCross Ref
  17. Costes, E., Smith, C., Renton, M., Guédon, Y., Prusinkiewicz, P., and Godin, C. 2008. MAppleT: Simulation of apple tree development using mixed stochastic and biomechanical models. Functional Plant Biology 35, 9/10, 936--950.Google ScholarGoogle Scholar
  18. Côté, J.-F., Widlowski, J.-L., Fournier, R., and Verstraete, M. 2009. The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar. Remote Sensing of Environment 113, 1067--1081.Google ScholarGoogle ScholarCross RefCross Ref
  19. de Reffye, P., Edelin, C., Franĉon, J., Jaeger, M., and Puech, C. 1988. Plant models faithful to botanical structure and development. Computer Graphics 22, 4, 151--158. Proceedings of SIGGRAPH 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Greene, N. 1989. Voxel space automata: modeling with stochastic growth processes in voxel space. Computer Graphics 23, 4, 175--184. Proceedings of SIGGRAPH 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hallé, F., Oldeman, R. A. A., and Tomlinson, P. B. 1978. Tropical trees and forests: An architectural analysis. Springer, Berlin.Google ScholarGoogle Scholar
  22. Honda, H. 1971. Description of the form of trees by the parameters of the tree-like body: Effects of the branching angle and the branch length on the shape of the tree-like body. Journal of Theoretical Biology 31, 331--338.Google ScholarGoogle ScholarCross RefCross Ref
  23. Ijiri, T., Owada, S., Okabe, M., and Igarashi, T. 2005. Floral diagrams and inflorescences: Interactive flower modeling using botanical structural constraints. ACM Transactions on Graphics 24, 3, 720--726. Proceedings of SIGGRAPH 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ijiri, T., Owada, S., and Igarashi, T. 2006. Seamless integration of initial sketching and subsequent detail editing in flower modeling. Computer Graphics Forum 25, 3, 138--146. Proceedings of Eurographics 2006.Google ScholarGoogle ScholarCross RefCross Ref
  25. Ijiri, T., Owada, S., and Igarashi, T. 2006. The sketch L-system: Global control of tree modeling using free-form strokes. Proceedings of Smart Graphics 2006, 138--146.Google ScholarGoogle ScholarCross RefCross Ref
  26. Karwowski, R., and Lane, B., 2004. L-studio 4.0 User's Guide. http: //algorithmicbotany.org/lstudio.Google ScholarGoogle Scholar
  27. Karwowski, R., and Prusinkiewicz, P. 2003. Design and implementation of the L+C modeling language. Electronic Notes in Theoretical Computer Science 86, 2, 134--152.Google ScholarGoogle ScholarCross RefCross Ref
  28. Lintermann, B., and Deussen, O. 1999. Interactive modeling of plants. IEEE Computer Graphics and Applications 19, 1, 56--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Macdonald, N. 1983. Trees and networks in biological models. J. Wiley & Sons, New York.Google ScholarGoogle Scholar
  30. Mandelbrot, B. B. 1982. The fractal geometry of nature. W. H. Freeman, San Francisco.Google ScholarGoogle Scholar
  31. Měch, R., and Prusinkiewicz, P. 1996. Visual models of plants interacting with their environment. Proceedings of SIGGRAPH 1996, 397--410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Neubert, B., Franken, T., and Deussen, O. 2007. Approximate image-based tree modeling using particle flows. ACM Transactions on Graphics 26, 3, 88-1-88-8. Proceedings of SIGGRAPH 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Okabe, M., Owada, S., and Igarashi, T. 2005. Interactive design of botanical trees using freehand sketches and example-based editing. Computer Graphics Forum 24, 3, 487--496. Proceedings of Eurographics 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Oppenheimer, P. 1986. Real time design and animation of fractal plants and trees. Computer Graphics 20, 4, 55--64. Proceedings of SIGGRAPH 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Pałubicki, W. 2007. Fuzzy plant modeling with OpenGL. VDM Verlag, Saarbrucken.Google ScholarGoogle Scholar
  36. Power, J., Bernheim-Brush, A. J., Prusinkiewicz, P., and Salesin, D. 1999. Interactive arrangement of botanical L-system models. Proceedings of the 1999 ACM Symposium on Interactive 3D Graphics, 175--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Prusinkiewicz, P., James, M., and Měch, R. 1994. Synthetic topiary. Proceedings of SIGGRAPH 1994, 351--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Prusinkiewicz, P., Mündermann, L., Karwowski, R., and Lane, B. 2001. The use of positional information in the modeling of plants. Proceedings of SIGGRAPH 2001, 289--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Reeves, W. T., and Blau, R. 1985. Approximate and probabilistic algorithms for shading and rendering structured particle systems. Computer Graphics 19, 3, 313--322. Proceedings of SIGGRAPH 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Rodkaew, Y., Chongstitvatana, P., Siripant, S., and Lursinsap, C. 2003. Particle systems for plant modeling. In Plant growth modeling and applications. Proceedings of PMA03, B.-G. Hu and M. Jaeger, Eds. Tsinghua University Press and Springer, Beijing, 210--217.Google ScholarGoogle Scholar
  41. Runions, A., Fuhrer, M., Lane, B., Federl, P., Rollandlagan, A.-G., and Prusinkiewicz, P. 2005. Modeling and visualization of leaf venation patterns. ACM Transactions on Graphics 24, 3, 702--711. Proceedings of SIGGRAPH 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Runions, A., Lane, B., and Prusinkiewicz, P. 2007. Modeling trees with a space colonization algorithm. Proceedings of the 2007 Eurographics Workshop on Natural Phenomena, 63--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Sachs, T., and Novoplansky, A. 1995. Tree from: Architectural models do not suffice. Israel Journal of Plant Sciences 43, 203--212.Google ScholarGoogle ScholarCross RefCross Ref
  44. Sachs, T. 2004. Self-organization of tree form: A model for complex social systems. Journal of Theoretical Biology 230, 197--202.Google ScholarGoogle ScholarCross RefCross Ref
  45. Shinozaki, K., Yoda, K., Hozumi, K., and Kira, T. 1964. A quantitative analysis of plant form --- the pipe model theory. I. Basic analyses. Japanese Journal of Ecology 14, 3, 97--104.Google ScholarGoogle Scholar
  46. Soler, C., Sillion, F., Blaise, F., and de Reffye, P. 2003. An efficient instantiation algorithm for simulating radiant energy transfer in plant models. ACM Transactions on Graphics 22, 2, 204--233. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Takenaka, A. 1994. A simulation model of tree architecture development based on growth response to local light environment. Journal of Plant Research 107, 321--330.Google ScholarGoogle ScholarCross RefCross Ref
  48. Ulam, S. 1962. On some mathematical properties connected with patterns of growth of figures. Proceedings of Symposia on Applied Mathematics 14, 215--224.Google ScholarGoogle ScholarCross RefCross Ref
  49. Weber, J., and Penn, J. 1995. Creation and rendering of realistic trees. Proceedings of SIGGRAPH 1995, 119--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Wither, J., Boudon, F., Cani, M.-P., and Godin, C. 2009. Structure from silhouettes: a new pradigm for fast sketch-based design of trees. Computer Graphics Forum 28, 2, 541--550. Proceedings of Eurographics 2009.Google ScholarGoogle ScholarCross RefCross Ref
  51. Zakaria, M. N., and Shukri, S. R. M. 2007. A sketch-and-spray interface for modeling trees. Proceedings of Smart Graphics 2007, 23--35. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Self-organizing tree models for image synthesis

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 28, Issue 3
            August 2009
            750 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/1531326
            Issue’s Table of Contents

            Copyright © 2009 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 27 July 2009
            Published in tog Volume 28, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader