Abstract
Hair simulation remains one of the most challenging aspects of creating virtual characters. Most research focuses on handling the massive geometric complexity of hundreds of thousands of interacting hairs. This is accomplished either by using brute force simulation or by reducing degrees of freedom with guide hairs. This paper presents a hybrid Eulerian/Lagrangian approach to handling both self and body collisions with hair efficiently while still maintaining detail. Bulk interactions and hair volume preservation is handled efficiently and effectively with a FLIP based fluid solver while intricate hair-hair interaction is handled with Lagrangian self-collisions. Thus the method has the efficiency of continuum/guide based hair models with the high detail of Lagrangian self-collision approaches.
Supplemental Material
Available for Download
- Anjyo, K., Usami, Y., and Kurihara, T. 1992. A simple method for extracting the natural beauty of hair. In Comp. Graph. (Proc. SIGGRAPH 1992), ACM, vol. 26, 111--120. Google Scholar
Digital Library
- Bando, Y., Chen, B.-Y., and Nishita, T. 2003. Animating hair with loosely connected particles. In Comp. Graph. Forum (Eurographics Proc.), 411--418.Google Scholar
- Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. 2008. Discrete elastic rods. ACM Trans. on Graph. 27, 3, 1--12. Google Scholar
Digital Library
- Bertails, F., Kim, T.-Y., Cani, M.-P., and Neumann, U. 2003. Adaptive wisp tree - a multiresolution control structure for simulating dynamics clustering in hair motion. ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 207--213. Google Scholar
Digital Library
- Bertails, F., Ménier, C., and Cani, M.-P. 2005. A practical self-shadowing algorithm for interactive hair animation. In Graph. Interface, 71--78. Google Scholar
Digital Library
- Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., and Lévêque, J.-L. 2006. Super-helices for predicting the dynamics of natural hair. ACM Trans. on Graph. 25, 3, 1180--1187. Google Scholar
Digital Library
- Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. In Proc. of SIGGRAPH 2002, ACM, vol. 21, 594--603. Google Scholar
Digital Library
- Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 28--36. Google Scholar
Digital Library
- Brown, J., Latombe, J.-C., and Montgomery, K. 2004. Real-time knot-tying simulation. Vis. Comput. 20, 2, 165--179. Google Scholar
Digital Library
- Carlson, M., Mucha, P., Van Horn, R., and Turk, G. 2002. Melting and flowing. In Proc. of the ACM SIGGRAPH Symp. on Comput. Anim., vol. 21, 167--174. Google Scholar
Digital Library
- Chang, J., Jin, J., and Yu, Y. 2002. A practical model for hair mutual interactions. In ACM SIGGRAPH/Eurographics Symp. on Comp. Anim., 73--80. Google Scholar
Digital Library
- Choe, B., and Ko, H.-S. 2005. A statistical wisp model and pseudophysical approaches for interactive hairstyle generation. IEEE Trans. on Vis. and Comput. Graph. 11, 2, 160--170. Google Scholar
Digital Library
- Choe, B., Choi, M., and Ko, H.-S. 2005. Simulating complex hair with robust collision handling. In Proc. of ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 153--160. Google Scholar
Digital Library
- Chorin, A. 1967. A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12--26.Google Scholar
Cross Ref
- Grégoire, M., and Schömer, E. 2006. Interactive simulation of one-dimensional flexible parts. In Symp. on Solid and Physical Modeling, 95--103. Google Scholar
Digital Library
- Gupta, R., Montagnoo, M., Volino, P., and Magnenat-Thalmann, N. 2006. Optimized framework for real time hair simulation. In CGI Proc. 2006, 702--710. Google Scholar
Digital Library
- Hadap, S., and Magnenat-Thalmann, N. 2001. Modeling dynamic hair as a continuum. In Comp. Graph. Forum (Eurographics Proc.), 329--338.Google Scholar
- Hadap, S. 2006. Oriented strands: dynamics of stiff multibody system. In SCA '06: Proc. of the 2006 ACM SIGGRAPH/Eurographics Symp. on Comput. anim., 91--100. Google Scholar
Digital Library
- Harmon, D., Vouga, E., Tamstorf, R., and Grinspun, E. 2008. Robust treatment of simultaneous collisions. ACM Trans. on Graph. 27, 3, 1--4. Google Scholar
Digital Library
- Kim, T.-Y., and Neumann, U. 2002. Interactive multiresolution hair modeling and editing. In Proc. of SIGGRAPH 2002, ACM, vol. 21, 620--629. Google Scholar
Digital Library
- Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R., 2008. Two-way coupled SPH and particle level set fluid simulation.Google Scholar
- Moon, J. T., Walter, B., and Marschner, S. 2008. Efficient multiple scattering in hair using spherical harmonics. ACM Trans. Graph. 27, 3, 1--7. Google Scholar
Digital Library
- Pai, D. K. 2002. Strands: Interactive simulation of thin solids using cosserat models. In Proc. of Eurographics, vol. 21 of Comput. Graph. Forum, Eurographics Assoc., 347--352.Google Scholar
- Petrovic, L., Henne, M., and Anderson, J. 2005. Volumetric methods for simulation and rendering of hair. Tech. rep., Pixar Animation Studios.Google Scholar
- Plante, E., Cani, M.-P., and Poulin, P. 2002. Capturing the complexity of hair motion. Graph. Models 64, 1, 40--58. Google Scholar
Digital Library
- Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 193--202. Google Scholar
Digital Library
- Rosenblum, R. E., Carlson, W. E., and Tripp III, E. 1991. Simulating the structure and dynamics of human hair: modelling, rendering and animation. J. Vis. and Comput. Anim. 2, 4, 141--148.Google Scholar
Cross Ref
- Selle, A., Lentine, M., and Fedkiw, R. 2008. A mass spring model for hair simulation. ACM Trans. on Graph. 27, 3, 1--11. Google Scholar
Digital Library
- Sifakis, E., Marino, S., and Teran, J. 2008. Globally coupled impulse-based collision handling for cloth simulation. In ACM SIGGRAPH/Eurographics Symp. on Comp. Anim.Google Scholar
- Spillmann, J., and Teschner, M. 2007. CoRDE: cosserat rod elements for the dynamic simulation of one-dimensional elastic object. In Proc. of ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 209--217. Google Scholar
Digital Library
- Stam, J. 1999. Stable fluids. In Proc. of SIGGRAPH 1999, ACM, 121--128. Google Scholar
Digital Library
- Ward, K., and Lin, M. C. 2003. Adaptive grouping and subdivision for simulating hair dynamics. In Pacific Graph., 234. Google Scholar
Digital Library
- Ward, K., Lin, M. C., Lee, J., Fisher, S., and Macri, D. 2003. Modeling hair using level-of-detail representations. In Proc. of Comput. Anim. and Social Agents (CASA), 41. Google Scholar
Digital Library
- Ward, K., Bertails, F., Kim, T.-Y., Marschner, S. R., Cani, M.-P., and Lin, M. C. 2007. A survey on hair modeling: Styling, simulation and rendering. IEEE Trans. on Vis. and Comput. Graph. 13, 2, 213--234. Google Scholar
Digital Library
- Yu, Y. 2001. Modeling realistic virtual hairstyles. In Pacific Graph., 295--304. Google Scholar
Digital Library
- Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. on Graph. 24, 3, 965--972. Google Scholar
Digital Library
- Zinke, A., Yuksel, C., Weber, A., and Keyser, J. 2008. Dual scattering approximation for fast multiple scattering in hair. ACM Trans. on Graph. 27, 3, 1--10. Google Scholar
Digital Library
Index Terms
Detail preserving continuum simulation of straight hair
Recommendations
Real-time hair mesh simulation
I3D '16: Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and GamesWe present a robust real-time hair simulation method using hair meshes. Leveraging existing simulation models for sheet-based cloth, we introduce a volumetric force model for incorporating hair interactions inside the hair mesh volume. We also introduce ...
Artistic simulation of curly hair
SCA '13: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer AnimationArtistic simulation of hair presents many challenges - ranging from incorporating artistic control to dealing with extreme motions of characters. Additionally, in a production environment, the simulation needs to be fast and results need to be usable "...
Detail preserving continuum simulation of straight hair
SIGGRAPH '09: ACM SIGGRAPH 2009 papersHair simulation remains one of the most challenging aspects of creating virtual characters. Most research focuses on handling the massive geometric complexity of hundreds of thousands of interacting hairs. This is accomplished either by using brute ...





Comments