skip to main content
research-article

A benchmark for 3D mesh segmentation

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

This paper describes a benchmark for evaluation of 3D mesh segmentation salgorithms. The benchmark comprises a data set with 4,300 manually generated segmentations for 380 surface meshes of 19 different object categories, and it includes software for analyzing 11 geometric properties of segmentations and producing 4 quantitative metrics for comparison of segmentations. The paper investigates the design decisions made in building the benchmark, analyzes properties of human-generated and computer-generated segmentations, and provides quantitative comparisons of 7 recently published mesh segmentation algorithms. Our results suggest that people are remarkably consistent in the way that they segment most 3D surface meshes, that no one automatic segmentation algorithm is better than the others for all types of objects, and that algorithms based on non-local shape features seem to produce segmentations that most closely resemble ones made by humans.

Skip Supplemental Material Section

Supplemental Material

tps078_09.mp4

References

  1. Agathos, A., Pratikakis, I., Perantonis, S., Sapidis, N., and Azariadis, P. 2007. 3d mesh segmentation methodologies for cad applications. 827--841.Google ScholarGoogle Scholar
  2. Amazon, 2008. Mechanical turk. www.mturk.com.Google ScholarGoogle Scholar
  3. Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., and Tal, A. 2006. Mesh segmentation - a comparative study. In SMI '06: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006, IEEE Computer Society, Washington, DC, USA, 7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Attene, M., Falcidieno, B., and Spagnuolo, M. 2006. Hierarchical mesh segmentation based on fitting primitives. Vis. Comput. 22, 3, 181--193. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Benhabiles, H., Vandeborre, J., Lavoue, G., and Daoudi, M. 2009. A framework for the objective evaluation of segmentation algorithms using a ground-truth of human segmented 3d-models. In Shape Modeling International.Google ScholarGoogle Scholar
  6. Biasotti, S., Marini, S., Mortara, M., and Patanè, G. 2003. An overview on properties and efficacy of topological skeletons in shape modelling. In Shape Modeling International, 245--256, 297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Biederman, I. 1987. Recognition-by-components: A theory of human image understanding. Psychological Review 94, 2, 115--147.Google ScholarGoogle ScholarCross RefCross Ref
  8. Chazelle, B., Dobkin, D., Shourhura, N., and Tal, A. 1997. Strategies for polyhedral surface decomposition: An experimental study. Computational Geometry: Theory and Applications 7, 4--5, 327--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Correia, P., and Pereira, F. 2000. Objective evaluation of relative segmentation quality. In ICIP00, Vol I: 308--311.Google ScholarGoogle Scholar
  10. Everingham, M., Muller, H., and Thomas, B. T. 2002. Evaluating image segmentation algorithms using the pareto front. In ECCV '02: Proceedings of the 7th European Conference on Computer Vision-Part IV, Springer-Verlag, London, UK, 34--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Federico, M., Giordani, D., and Coletti, P. 2000. Development and evaluation of an Italian broadcast news corpus. In Second International Conference on Language Resources and Evaluation (LREC), 921--924.Google ScholarGoogle Scholar
  12. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., and Dobkin, D. 2004. Modeling by example. ACM Trans. Graph. 23, 3, 652--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Garland, M., Willmott, A., and Heckbert, P. S. 2001. Hierarchical face clustering on polygonal surfaces. In I3D '01: Proceedings of the 2001 symposium on Interactive 3D graphics, ACM, New York, NY, USA, 49--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gelfand, N., and Guibas, L. J. 2004. Shape segmentation using local slippage analysis. In SGP '04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, ACM, New York, NY, USA, 214--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Giorgi, D., Biasotti, S., and Paraboschi, L., 2007. SHREC:SHape REtrieval Contest: Watertight models track, http://watertight.ge.imati.cnr.it/.Google ScholarGoogle Scholar
  16. Golovinskiy, A., and Funkhouser, T. 2008. Randomized cuts for 3D mesh analysis. ACM Transactions on Graphics (Proc. SIGGRAPH ASIA) 27, 5 (Dec.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Gregory, A. D., State, A., Lin, M. C., Manocha, D., and Livingston, M. A. 1999. Interactive surface decomposition for polyhedral morphing. The Visual Computer 15, 9, 453--470.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hoffman, D. D., and Singh, M. 1997. Salience of visual parts. Cognition 63, 29--78.Google ScholarGoogle ScholarCross RefCross Ref
  19. Hoffman, D. D., Richards, W., Pentl, A., Rubin, J., and Scheuhammer, J. 1984. Parts of recognition. Cognition 18, 65--96.Google ScholarGoogle ScholarCross RefCross Ref
  20. Huang, Q., and Dom, B. 1995. Quantitative methods of evaluating image segmentation. In ICIP '95: Proceedings of the 1995 International Conference on Image Processing (Vol. 3)-Volume 3, IEEE Computer Society, Washington, DC, USA, 3053. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Katz, S., and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics (Proc. SIGGRAPH) 22, 3 (July), 954--961. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Katz, S., Leifman, G., and Tal, A. 2005. Mesh segmentation using feature point and core extraction. The Visual Computer 21, 8--10, 649--658.Google ScholarGoogle ScholarCross RefCross Ref
  23. Kraevoy, V., Julius, D., and Sheffer, A. 2007. Shuffler: Modeling with interchangeable parts. In Pacific Graphics.Google ScholarGoogle Scholar
  24. Lai, Y.-K., Hu, S.-M., Martin, R. R., and Rosin, P. L. 2008. Fast mesh segmentation using random walks. In Symposium on Solid and Physical Modeling, 183--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., and Seidel, H.-P. 2004. Intelligent mesh scissoring using 3D snakes. In 12th Pacific Conference on Computer Graphics and Applications (PG). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 3, 362--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lin, H.-Y. S., Liao, H.-Y. M., and Lin, J.-C. 2007. Visual salience-guided mesh decomposition. IEEE Transactions on Multimedia 9, 1, 46--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Liu, R., and Zhang, H. 2004. Segmentation of 3d meshes through spectral clustering. In PG '04: Proceedings of the Computer Graphics and Applications, 12th Pacific Conference, IEEE Computer Society, Washington, DC, USA, 298--305. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Martin, D., Fowlkes, C., Tal, D., and Malik, J. 2001. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In in Proc. 8th Intl Conf. Computer Vision, 416--423.Google ScholarGoogle Scholar
  30. Mortara, M., Patane, G., Spagnuolo, M., Falcidieno, B., and Rossignac, J. 2004. Blowing bubbles for the multi-scale analysis and decomposition of triangle meshes. Algorithmica (Special Issues on Shape Algorithms) 38, 2, 227--248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Mortara, M., Patanè, G., Spagnuolo, M., Falcidieno, B., and Rossignac, J. 2004. Plumber: a method for a multi-scale decomposition of 3D shapes into tubular primitives and bodies. In ACM symposium on Solid modeling and applications, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 339--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Over, P., Leung, C., Ip, H., and Grubinger, M. 2004. Multimedia retrieval benchmarks. IEEE MultiMedia 11, 2, 80--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Rand, W. 1971. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66, 846--850.Google ScholarGoogle ScholarCross RefCross Ref
  34. Robbiano, F., Attene, M., Spagnuolo, M., and Falcidieno, B. 2007. Part-based annotation of virtual 3d shapes. In CW '07: Proceedings of the 2007 International Conference on Cyberworlds, IEEE Computer Society, Washington, DC, USA, 427--436. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T. 2008. Labelme: A database and web-based tool for image annotation. Int. J. Comput. Vision 77, 1--3, 157--173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Shamir, A. 2008. A survey on mesh segmentation techniques. Computer Graphics Forum 28, 6, 1539--1556.Google ScholarGoogle ScholarCross RefCross Ref
  37. Shapira, L., Shamir, A., and Cohen-Or, D. 2008. Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24, 4, 249--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T. 2004. The princeton shape benchmark. In Shape Modeling International, IEEE Computer Society, Washington, DC, USA, 167--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Shlafman, S., Tal, A., and Katz, S., 2002. Metamorphosis of polyhedral surfaces using decomposition.Google ScholarGoogle Scholar
  40. Smeaton, A. F., Kraaij, W., and Over, P. 2004. TREC video retrieval evaluation: a case study and status report. In Coupling Approaches, Coupling Media and Coupling Languages for Information Retrieval (RIAO).Google ScholarGoogle Scholar
  41. Unnikrishnan, R., Pantofaru, C., and Hebert, M. 2005. A measure for objective evaluation of image segmentation algorithms. In Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR '05), Workshop on Empirical Evaluation Methods in Computer Vision, vol. 3, 34--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wu, H.-Y., Pan, C., Pan, J., Yang, Q., and Ma, S. 2007. A sketch-based interactive framework for real-time mesh segmentation. In Computer Graphics International.Google ScholarGoogle Scholar
  43. Zhang, H., Fritts, J. E., and Goldman, S. A. 2008. Image segmentation evaluation: A survey of unsupervised methods. Comput. Vis. Image Underst. 110, 2, 260--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Zhang, Y. 1996. A survey on evaluation methods for image segmentation. PR 29, 8 (August), 1335--1346.Google ScholarGoogle Scholar
  45. Zöckler, M., Stalling, D., and Hege, H.-C. 2000. Fast and intuitive generation of geometric shape transitions. The Visual Computer 16(5), 241--253.Google ScholarGoogle ScholarCross RefCross Ref
  46. Zuckerberger, E. 2002. Polyhedral surface decomposition with applications. Computers and Graphics 26, 5 (October), 733--743.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A benchmark for 3D mesh segmentation

                    Recommendations

                    Comments

                    Login options

                    Check if you have access through your login credentials or your institution to get full access on this article.

                    Sign in

                    Full Access

                    • Published in

                      cover image ACM Transactions on Graphics
                      ACM Transactions on Graphics  Volume 28, Issue 3
                      August 2009
                      750 pages
                      ISSN:0730-0301
                      EISSN:1557-7368
                      DOI:10.1145/1531326
                      Issue’s Table of Contents

                      Copyright © 2009 ACM

                      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                      Publisher

                      Association for Computing Machinery

                      New York, NY, United States

                      Publication History

                      • Published: 27 July 2009
                      Published in tog Volume 28, Issue 3

                      Permissions

                      Request permissions about this article.

                      Request Permissions

                      Check for updates

                      Qualifiers

                      • research-article

                    PDF Format

                    View or Download as a PDF file.

                    PDF

                    eReader

                    View online with eReader.

                    eReader