skip to main content
research-article

Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

We present a practical approach to isotropic tetrahedral meshing of 3D domains bounded by piecewise smooth surfaces. Building upon recent theoretical and practical advances, our algorithm interleaves Delaunay refinement and mesh optimization to generate quality meshes that satisfy a set of user-defined criteria. This interleaving is shown to be more conservative in number of Steiner point insertions than refinement alone, and to produce higher quality meshes than optimization alone. A careful treatment of boundaries and their features is presented, offering a versatile framework for designing smoothly graded tetrahedral meshes.

Skip Supplemental Material Section

Supplemental Material

tps047_09.mp4

References

  1. Acar, U., Hudson, B., Miller, G., and Phillips, T. 2007. SVR: Practical Engineering of a Fast 3D Meshing Algorithm. In Proc. of 16th Int. Meshing Roundtable, 45--62.Google ScholarGoogle Scholar
  2. Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. 2005. Variational Tetrahedral Meshing. In Proc. of ACM SIGGRAPH 2005, vol. 24(3), 617--625. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Amenta, N., Bern, M., and Eppstein, D. 1999. Optimal Point Placement for Mesh Smoothing. J. of Algorithms 30, 2, 302--322. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Antani, L., Delage, C., and Alliez, P. 2007. Mesh Sizing with Additively Weighted Voronoi Diagrams. In Proc. of the 16th Int. Meshing Roundtable, 335--346.Google ScholarGoogle Scholar
  5. Boissonnat, J.-D., Wormser, C., and Yvinec, M. 2007. Curved Voronoi diagrams. In Effective Comp. Geometry for Curves and Surfaces, Springer, Ed. 67--116.Google ScholarGoogle Scholar
  6. Boivin, C., and Ollivier-Gooch, C. 2002. Guaranteed-quality Triangular Mesh Generation for Domains with Curved Boundaries. Int. J. Numer. Methods Eng. 55, 1185--1213.Google ScholarGoogle ScholarCross RefCross Ref
  7. Chen, L., and Xu, J. 2004. Optimal Delaunay triangulations. J. of Comp. Mathematics 22, 2, 299--308.Google ScholarGoogle Scholar
  8. Chen, L. 2004. Mesh Smoothing Schemes based on Optimal Delaunay Triangulations. In Proc. of the 13th Int. Meshing Roundtable, 109--120.Google ScholarGoogle Scholar
  9. Cheng, S., Dey, T., Edelsbrunner, H., Facello, M., and Teng, S. 2000. Sliver Exudation. J. of the ACM 47, 5, 883--904. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cheng, S., Dey, T., and Levine, J. 2007. A Practical Delaunay Meshing Algorithm for a Large Class of Domains. In Proc. of the 16th Int. Meshing Roundtable, 477--494.Google ScholarGoogle Scholar
  11. Cheng, S., Dey, T., and Ramos, E. 2007. Delaunay Refinement for Piecewise Smooth Complexes. In Proc. of the 18th Symp. on Discrete Algorithms, 1096--1105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chew, L. 1989. Guaranteed-Quality Triangular Meshes. Tech. rep., Dept. of Computer Science, Cornell Univ.Google ScholarGoogle Scholar
  13. Chew, L. 1993. Guaranteed-quality Mesh Generation for Curved Surfaces. In Proc. of the 9th Symp. on Comp. Geometry, ACM NY, USA, 274--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Du, Q., Faber, V., and Gunzburger, M. 1999. Centroidal Voronoi tesselations. SIAM Review 41, 4, 637--676. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Freitag, L., and Ollivier-Gooch, C. 1997. Tetrahedral Mesh Improvement using Swapping and Smoothing. Int. J. for Num. Methods in Eng. 40, 21, 3979--4002.Google ScholarGoogle ScholarCross RefCross Ref
  16. George, P.-L. 2004. Tetmesh-GHS3D, Tetrahedral Mesh Generator. INRIA User's Manual, INRIA (Institut National de Recherche en Informatique et Automatique), France.Google ScholarGoogle Scholar
  17. Klingner, B., and Shewchuk, J. 2007. Aggressive Tetrahedral Mesh Improvement. In Proc. of the 16th Int. Meshing Roundtable, 3--23.Google ScholarGoogle Scholar
  18. Labelle, F., and Shewchuk, J. 2007. Isosurface Stuffing: Fast Tetrahedral Meshes with Good Dihedral Angles. In ACM Transactions on Graphics, vol. 26(3), No. 57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Li, X. 2000. Sliver-free 3-Dimensional Delaunay Mesh Generation. PhD thesis, University of Illinois at Urbana-Champaign. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Nave, D., Chrisochoides, N., and Chew, L. 2002. Guaranteed Quality Parallel Delaunay Refinement for Restricted Polyhedral Domains. Proc. of the 18th Symp. on Comp. Geometry, 135--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Oudot, S., Rineau, L., and Yvinec, M. 2005. Meshing Volumes Bounded by Smooth Surfaces. In Proc. of the 14th Int. Meshing Roundtable, 203--219.Google ScholarGoogle Scholar
  22. Persson, P., and Strang, G. 2004. A Simple Mesh Generator in MATLAB. SIAM Review, 329--346.Google ScholarGoogle Scholar
  23. Rineau, L., and Yvinec, M. 2007. Meshing 3D Domains Bounded by Piecewise Smooth Surfaces. In Proc. of the 16th Int. Meshing Roundtable, 443--460.Google ScholarGoogle Scholar
  24. Shewchuk, J. 2002. Delaunay Refinement Algorithms for Triangular Mesh Generation. Comp. Geometry: Theory and Applications 22, 1--3, 21--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Shewchuk, J. 2002. What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures. In Proc. of the 11th Int. Meshing Roundtable, 115--126.Google ScholarGoogle Scholar
  26. Si, H., 2007. TetGen, A Quality Tetrahedral Mesh Generator and 3-Dimensional Delaunay Triangulator. http://tetgen.berlios.de/.Google ScholarGoogle Scholar
  27. Terdiman, P., 2005. OPCODE 3D Collision Detection library. http://www.codercorner.com/Opcode.htm.Google ScholarGoogle Scholar
  28. Tournois, J., Alliez, P., and Devillers, O. 2007. Interleaving Delaunay Refinement and Optimization for 2D Triangle Mesh Generation. In Proc. of the 16th Int. Meshing Roundtable.Google ScholarGoogle Scholar
  29. Tournois, J. 2009. Mesh Optimization. PhD thesis, INRIA, Univ. de Nice Sophia Antipolis, France.Google ScholarGoogle Scholar
  30. Wendt, J. D., Baxter, W., Oguz, I., and Lin, M. C. 2007. Finite Volume Flow Simulations on Arbitrary Domains. Graphical Models 69, 1, 19--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wu, J., and Kobbelt, L. 2002. Fast Mesh Decimation by Multiple-Choice Techniques. Vision, Modeling, and Visualization 2002, 241--249.Google ScholarGoogle Scholar

Index Terms

  1. Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Graphics
                ACM Transactions on Graphics  Volume 28, Issue 3
                August 2009
                750 pages
                ISSN:0730-0301
                EISSN:1557-7368
                DOI:10.1145/1531326
                Issue’s Table of Contents

                Copyright © 2009 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 27 July 2009
                Published in tog Volume 28, Issue 3

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader