skip to main content
research-article

Contact-aware nonlinear control of dynamic characters

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

Dynamically simulated characters are difficult to control because they are underactuated---they have no direct control over their global position and orientation. In order to succeed, control policies must look ahead to determine stabilizing actions, but such planning is complicated by frequent ground contacts that produce a discontinuous search space. This paper introduces a locomotion system that generates high-quality animation of agile movements using nonlinear controllers that plan through such contact changes. We demonstrate the general applicability of this approach by emulating walking and running motions in rigid-body simulations. Then we consolidate these controllers under a higher-level planner that interactively controls the character's direction.

Skip Supplemental Material Section

Supplemental Material

tps006_09.mp4

References

  1. Abe, Y., da Silva, M., and Popović, J. 2007. Multiobjective control with frictional contacts. In Symposium on Computer Animation (SCA), 249--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Anitescu, M., and Potra, F. A. 1997. Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. nonlinear dynamics. Nonlinear Dynamics 14, 231--247.Google ScholarGoogle ScholarCross RefCross Ref
  3. Atkeson, C. G., and Morimoto, J. 2002. Nonparametric representation of policies and value functions: A trajectory-based approach. In Advances in Neural Information Processing Systems (NIPS), vol. 15. 1611--1618.Google ScholarGoogle Scholar
  4. Atkeson, C. G. 1994. Using local trajectory optimizers to speed up global optimization in dynamic programming. In Advances in Neural Information Processing Systems (NIPS), vol. 6, 663--670.Google ScholarGoogle Scholar
  5. Barbič, J., and Popović, J. 2008. Real-time control of physically based simulations using gentle forces. ACM Transactions on Graphics 27, 4, 163:1--163:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Betts, J. T., and Huffman, W. P. 1997. Sparse optimal control software socs. Tech. Rep. MEA-LR-085, Boeing Information and Support Services, The Boeing Co., Seattle, USA.Google ScholarGoogle Scholar
  7. Brotman, L. S., and Netravali, A. N. 1988. Motion interpolation by optimal control. In Computer Graphics (Proceedings of SIGGRAPH 88), 309--315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Byl, K., and Tedrake, R. 2008. Approximate optimal control of the compass gait on rough terrain. In International Conference on Robotics and Automation (ICRA), 1258--1263.Google ScholarGoogle Scholar
  9. Cohen, M. F. 1992. Interactive spacetime control for animation. In Computer Graphics (Proceedings of SIGGRAPH 92), vol. 26, 293--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Coros, S., Beaudoin, P., Yin, K. K., and van de Pann, M. 2008. Synthesis of constrained walking skills. ACM Transactions on Graphics 27, 5, 113:1--113:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cottle, R., Pang, J., and Stone, R. 1992. The Linear Complementarity Problem. Academic Press, San Diego.Google ScholarGoogle Scholar
  12. da Silva, M., Abe, Y., and Popović, J. 2008. Simulation of human motion data using short-horizon model-predictive control. Computer Graphics Forum 27, 2, 371--380.Google ScholarGoogle ScholarCross RefCross Ref
  13. da Silva, M., Abe, Y., and Popović, J. 2008. Interactive simulation of stylized human locomotion. ACM Transactions on Graphics 27, 3, 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proceedings of ACM SIGGRAPH 2001, Annual Conference Series, 251--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Transactions on Graphics 22, 3, 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fujimoto, Y., Obata, S., and Kawamura, A. 1998. Robust biped walking with active interaction control between foot and ground. In International Conference on Robotics and Automation (ICRA), 2030--2035.Google ScholarGoogle Scholar
  17. Hirai, K., Hirose, M., Haikawa, Y., and Takenaka, T. 1998. The development of honda humanoid robot. In International Conference on Robotics and Automation (ICRA), 1321--1326.Google ScholarGoogle Scholar
  18. Hodgins, J. K., and Pollard, N. S. 1997. Adapting simulated behaviors for new characters. In Proceedings of SIGGRAPH 97, Computer Graphics Proceedings, Annual Conference Series, 153--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O'Brien, J. F. 1995. Animating human athletics. In Proceedings of ACM SIGGRAPH 95, Annual Conference Series, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kolter, J. Z., Coates, A., Ng, A. Y., Gu, Y., and DuHadway, C. 2008. Space-indexed dynamic programming: learning to follow trajectories. In ICML '08: Proceedings of the 25th International Conference on Machine Learning, 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Laszlo, J. F., van de Panne, M., and Fiume, E. L. 1996. Limit cycle control and its application to the animation of balancing and walking. In Proceedings of SIGGRAPH 96, Annual Conference Series, 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lewis, F. L., and Syrmos, V. L. 1995. Optimal Control. John Wiley & Sons, Inc., New York, NY, USA.Google ScholarGoogle Scholar
  23. Liu, C. K., Hertzmann, A., and Popović, Z. 2005. Learning physics-based motion style with nonlinear inverse optimization. ACM Transactions on Graphics 24, 3, 1071--1081. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. McCann, J., and Pollard, N. 2007. Responsive characters from motion fragments. ACM Transactions on Graphics 26, 3, 6:1--6:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Miura, H., and Shimoyama, I. 1984. Dynamic walk of a biped. International Journal of Robotics Research 3, 2, 60--74.Google ScholarGoogle ScholarCross RefCross Ref
  26. Ngo, J. T., and Marks, J. 1993. Spacetime constraints revisited. In Proceedings of ACM SIGGRAPH 2000, Annual Conference Series, 343--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Pearson, J. D. 1962. Approximation methods in optimal control. Journal of Electronics and Control 13, 453--465.Google ScholarGoogle ScholarCross RefCross Ref
  28. Popović, Z., and Witkin, A. P. 1999. Physically based motion transformation. In Computer Graphics (Proceedings of SIGGRAPH 99), Annual Conference Series, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Raibert, M. H., and Hodgins, J. K. 1991. Animation of dynamic legged locomotion. In Computer Graphics (Proceedings of SIGGRAPH 91), ACM SIGGRAPH, Annual Conference Series, 349--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Raibert, M. H. 1986. Legged Robots That Balance. MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Safonova, A., Hodgins, J., and Pollard, N. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Transactions on Graphics 23, 3, 514--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sharon, D., and van de Panne, M. 2005. Synthesis of controllers for stylized planar bipedal walking. In International Conference on Robotics and Automation (ICRA), 2387--2392.Google ScholarGoogle Scholar
  33. Sok, K. W., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Transactions on Graphics 26, 3, 107:1--107:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Stewart, A. J., and Cremer, J. F. 1989. Algorithmic control of walking. In International Conference on Robotics and Automation (ICRA), 1598--1603.Google ScholarGoogle Scholar
  35. Stewart, D. E., and Trinkle, J. C. 1996. An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction. International Journal for Numerical Methods in Engineering 39, 15, 2673--2691.Google ScholarGoogle ScholarCross RefCross Ref
  36. Sulejmanpasić, A., and Popović, J. 2005. Adaptation of performed ballistic motion. ACM Transactions on Graphics 24, 1, 165--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Tassa, Y., Erez, T., and Smart, W. 2008. Receding horizon differential dynamic programming. In Advances in Neural Information Processing Systems (NIPS), vol. 20. MIT Press, Cambridge, MA, 1465--1472.Google ScholarGoogle Scholar
  38. Tedrake, R. L. 2004. Applied Optimal Control for Dynamically Stable Legged Locomotion. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Treuille, A., Lee, Y., and Popović, Z. 2007. Near-optimal character animation with continuous control. ACM Transactions on Graphics 26, 3, 7:1--7:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Vukobratovic, M., and Juricic, D. 1969. Contribution to the synthesis of biped gait. IEEE Transactions on Biomedical Engineering 16, 1--6.Google ScholarGoogle ScholarCross RefCross Ref
  41. Wernli, A., and Cook, G. 1975. Suboptimal control for the nonlinear quadratic regulator problem. Automatica 11, 75--84.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Westervelt, E., Grizzle, J., and Koditschek, D. 2003. Hybrid zero dynamics of planar biped walkers. IEEE Transactions on Automatic Control 48, 1, 42--56.Google ScholarGoogle ScholarCross RefCross Ref
  43. Wieber, P.-B., and Chevallereau, C. 2006. Online adaptation of reference trajectories for the control of walking systems. Robotics and Autonomous Systems 54, 7, 559--566.Google ScholarGoogle ScholarCross RefCross Ref
  44. Witkin, A., and Kass, M. 1988. Spacetime constraints. In Computer Graphics (Proceedings of SIGGRAPH 88), vol. 22, 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Yin, K., Loken, K., and van de Panne, M. 2007. SIMBICON: Simple biped locomotion control. ACM Transactions on Graphics 26, 3, 105:1--105:10. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Contact-aware nonlinear control of dynamic characters

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 28, Issue 3
      August 2009
      750 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/1531326
      Issue’s Table of Contents

      Copyright © 2009 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 July 2009
      Published in tog Volume 28, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader