skip to main content
research-article

Linear Bellman combination for control of character animation

Authors Info & Claims
Published:27 July 2009Publication History
Skip Abstract Section

Abstract

Controllers are necessary for physically-based synthesis of character animation. However, creating controllers requires either manual tuning or expensive computer optimization. We introduce linear Bellman combination as a method for reusing existing controllers. Given a set of controllers for related tasks, this combination creates a controller that performs a new task. It naturally weights the contribution of each component controller by its relevance to the current state and goal of the system. We demonstrate that linear Bellman combination outperforms naive combination often succeeding where naive combination fails. Furthermore, this combination is provably optimal for a new task if the component controllers are also optimal for related tasks. We demonstrate the applicability of linear Bellman combination to interactive character control of stepping motions and acrobatic maneuvers.

Skip Supplemental Material Section

Supplemental Material

tps004_09.mp4

References

  1. Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning via inverse reinforcement learning. In International Conference on Machine learning (ICML), ACM, vol. 69, 1:1--1:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Atkeson, C. G., and Morimoto, J. 2002. Nonparametric representation of policies and value functions: A trajectory-based approach. In Advances in Neural Information Processing Systems (NIPS), vol. 15, 1611--1618.Google ScholarGoogle Scholar
  3. Atkeson, C. G. 1994. Using local trajectory optimizers to speed up global optimization in dynamic programming. In Advances in Neural Information Processing Systems (NIPS), vol. 6, 663--670.Google ScholarGoogle Scholar
  4. Barbič, J., and Popović, J. 2008. Real-time control of physically based simulations using gentle forces. ACM Transactions on Graphics 27, 5, 163:1--163:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bellman, R. E. 1957. Dynamic Programming. Princeton University Press, Princeton, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. 2007. Tracks: toward directable thin shells. ACM Transactions on Graphics 26, 3, 50:1--50:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bertsekas, D. P. 2007. Dynamic Programming and Optimal Control, 3 ed., vol. I. Athena Scientific, Nashua, NH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Brotman, L. S., and Netravali, A. N. 1988. Motion interpolation by optimal control. In Computer Graphics (Proceedings of SIGGRAPH 88), 309--315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Burridge, R. R., Rizzi, A. A., and Koditschek, D. E. 1999. Sequential composition of dynamically desterous robot behaviours. International Journal of Robotics Research 18, 6, 534--555.Google ScholarGoogle ScholarCross RefCross Ref
  10. Coros, S., Beaudoin, P., Yin, K., and van de Panne, M. 2008. Synthesis of constrained walking skills. ACM Transactions on Graphics 27, 5, 113:1--113:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. da Silva, M., Abe, Y., and Popović, J. 2008. Simulation of human motion data using short-horizon model-predictive control. Computer Graphics Forum 27, 2, 371--380.Google ScholarGoogle ScholarCross RefCross Ref
  12. da Silva, M., Abe, Y., and Popović, J. 2008. Interactive simulation of stylized human locomotion. ACM Transactions on Graphics 27, 3, 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Erez, T., and Smart, W. 2007. Bipedal walking on rough terrain using manifold control. International Conference on Intelligent Robots and Systems (IROS), 1539--1544.Google ScholarGoogle Scholar
  14. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proceedings of ACM SIGGRAPH 2001, Annual Conference Series, 251--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Fattal, R., and Lischinski, D. 2004. Target-driven smoke animation. ACM Transactions on Graphics 23, 3, 441--448. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fleming, W. H. 1978. Exit probabilities and optimal stochastic control. Applied Mathematics and Optimization 4, 329--346.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hodgins, J. K., and Pollard, N. S. 1997. Adapting simulated behaviors for new characters. In Proceedings of SIGGRAPH 97, Annual Conference Series, 153--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O'Brien, J. F. 1995. Animating human athletics. In Proceedings of ACM SIGGRAPH 95, Annual Conference Series, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Holland, C. 1977. A new energy characterization of the smallest eigenvalue fo the schrödinger equation. Communications on Pure and Applied Mathematics 30, 755--765.Google ScholarGoogle ScholarCross RefCross Ref
  20. Jacobson, D., and Mayne, D. 1970. Differential Dynamic Programming, 1st ed. Elsevier, New York.Google ScholarGoogle Scholar
  21. Kappen, H. J. 2005. Linear theory for control of nonlinear stochastic systems. Physical Review Letters 95, 20, 200--204.Google ScholarGoogle ScholarCross RefCross Ref
  22. Laszlo, J. F., van de Panne, M., and Fiume, E. L. 1996. Limit cycle control and its application to the animation of balancing and walking. In Proceedings of SIGGRAPH 96, Annual Conference Series, 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Liu, C. K., Hertzmann, A., and Popović, Z. 2005. Learning physics-based motion style with nonlinear inverse optimization. ACM Transactions on Graphics 24, 3, 1071--1081. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. McCann, J., and Pollard, N. 2007. Responsive characters from motion fragments. ACM Transactions on Graphics 26, 3, 6:1--6:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Transactions on Graphics 23, 3, 449--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Milam, M. B. 2003. Real-Time Optimal Trajectory Generation for Constrained Dynamical Systems. PhD thesis, Caltech.Google ScholarGoogle Scholar
  27. Ngo, J. T., and Marks, J. 1993. Spacetime constraints revisited. In Proceedings of ACM SIGGRAPH 2000, Annual Conference Series, 343--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Oksendal, B. K. 2002. Stochastic Differential Equations: An Introduction with Applications. Springer, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pollard, N. S., and Behmaram-Mosavat, F. 2000. Force-based motion editing for locomotion tasks. In In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 663--669.Google ScholarGoogle Scholar
  30. Popović, Z., and Witkin, A. P. 1999. Physically based motion transformation. In Computer Graphics (Proceedings of SIGGRAPH 99), ACM SIGGRAPH, Annual Conference Series, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Safonova, A., Hodgins, J., and Pollard, N. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Transactions on Graphics 23, 3, 514--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sok, K. W., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Transactions on Graphics 26, 3, 107:1--107:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sulejmanpasić, A., and Popović, J. 2005. Adaptation of performed ballistic motion. ACM Transactions on Graphics 24, 1, 165--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Tassa, Y., Erez, T., and Smart, W. 2008. Receding horizon differential dynamic programming. In Advances in Neural Information Processing Systems (NIPS), vol. 20, 1465--1472.Google ScholarGoogle Scholar
  36. Todorov, E. 2006. Bayesian Brain: Probabilistic Approaches to Neural Coding. MIT Press, Cambridge, MA, ch. 12, 269--298.Google ScholarGoogle Scholar
  37. Todorov, E. 2006. Linearly-solvable markov decision problems. Advances in Neural Information Processing Systems (NIPS) 19, 1369--1376.Google ScholarGoogle Scholar
  38. Todorov, E. 2008. Efficient computation of optimal actions. http://www.cogsci.ucsd.edu/~todorov/papers/framework.pdf. Unpublished manuscript, March.Google ScholarGoogle Scholar
  39. Todorov, E. 2009. Compositionality of optimal control laws. http://www.cogsci.ucsd.edu/~todorov/papers/primitives.pdf. Unpublished manuscript, January 15.Google ScholarGoogle Scholar
  40. Treuille, A., Lee, Y., and Popović, Z. 2007. Near-optimal character animation with continuous control. ACM Transactions on Graphics 26, 3, 7:1--7:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. van de Panne, M., Kim, R., and Fiume, E. 1994. Synthesizing parameterized motions. In Eurographics Workshop on Simulation and Animation.Google ScholarGoogle Scholar
  42. Witkin, A., and Kass, M. 1988. Spacetime constraints. In Computer Graphics (Proceedings of SIGGRAPH 88), vol. 22, 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Wooten, W. L., and Hodgins, J. K. 2000. Simulating leaping, tumbling, landing and balancing humans. International Conference on Robotics and Automation (ICRA), 656--662.Google ScholarGoogle Scholar
  44. Yin, K., Loken, K., and van de Panne, M. 2007. SIMBICON: Simple biped locomotion control. ACM Transactions on Graphics 26, 3, 105:1--105:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Yin, K., Coros, S., Beaudoin, P., and van de Panne, M. 2008. Continuation methods for adapting simulated skills. ACM Transactions on Graphics 27, 3, 81:1--81:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Zordan, V. B., and Hodgins, J. K. 2002. Motion capture-driven simulations that hit and react. In Symposium on Computer Animation (SCA), 89--96. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Linear Bellman combination for control of character animation

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 28, Issue 3
          August 2009
          750 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1531326
          Issue’s Table of Contents

          Copyright © 2009 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 July 2009
          Published in tog Volume 28, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader