skip to main content
research-article

Capacity-constrained point distributions: a variant of Lloyd's method

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

We present a new general-purpose method for optimizing existing point sets. The resulting distributions possess high-quality blue noise characteristics and adapt precisely to given density functions. Our method is similar to the commonly used Lloyd's method while avoiding its drawbacks. We achieve our results by utilizing the concept of capacity, which for each point is determined by the area of its Voronoi region weighted with an underlying density function. We demand that each point has the same capacity. In combination with a dedicated optimization algorithm, this capacity constraint enforces that each point obtains equal importance in the distribution. Our method can be used as a drop-in replacement for Lloyd's method, and combines enhancement of blue noise characteristics and density function adaptation in one operation.

Skip Supplemental Material Section

Supplemental Material

tps089_09.mp4

References

  1. Aurenhammer, F., Hoffmann, F., and Aronov, B. 1998. Minkowski-type theorems and least-squares clustering. Algorithmica 20, 1, 61--76.Google ScholarGoogle ScholarCross RefCross Ref
  2. Balzer, M., and Heck, D. 2008. Capacity-constrained Voronoi diagrams in finite spaces. In Proceedings of the 5th Annual International Symposium on Voronoi Diagrams in Science and Engineering, vol. 2, 44--56.Google ScholarGoogle Scholar
  3. Chen, L. 2004. Mesh smoothing schemes based on optimal Delaunay triangulations. In Proceedings of the 13th International Meshing Roundtable, 109--120.Google ScholarGoogle Scholar
  4. Cook, R. L. 1986. Stochastic sampling in computer graphics. In Computer Graphics (Proceedings of SIGGRAPH 86), ACM, vol. 5, 51--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dippé, M. A. Z., and Wold, E. H. 1985. Antialiasing through stochastic sampling. In Computer Graphics (Proceedings of SIGGRAPH 85), ACM, vol. 19, 69--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Du, Q., and Emelianenko, M. 2006. Acceleration schemes for computing centroidal Voronoi tessellations. Numerical Linear Algebra with Applications 13, 2--3, 173--192.Google ScholarGoogle ScholarCross RefCross Ref
  7. Du, Q., Faber, V., and Gunzburger, M. 1999. Centroidal Voronoi tessellations: Applications and algorithms. SIAM Review 41, 4, 637--676. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dunbar, D., and Humphreys, G. 2006. A spatial data structure for fast Poisson-disk sample generation. In ACM Transactions on Graphics (Proceedings of SIGGRAPH 2006), ACM, vol. 25, 503--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Halton, J. H. 1970. A retrospective and perspective survey of the Monte Carlo method. SIAM Review 12, 1, 1--63.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hiller, S., Deussen, O., and Keller, A. 2001. Tiled blue noise samples. In Proceedings of the Vision Modeling and Visualization Conference 2001, IOS Press, 265--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jones, T. R. 2006. Efficient generation of Poisson-disk sampling patterns. Journal of Graphics Tools 11, 2, 27--36.Google ScholarGoogle ScholarCross RefCross Ref
  12. Kollig, T., and Keller, A. 2003. Efficient illumination by high dynamic range images. In Proceedings of the 14th Eurographics Workshop on Rendering, Eurographics Association, vol. 44, 45--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive Wang tiles for real-time blue noise. In ACM Transactions on Graphics (Proceedings of SIGGRAPH 2006), ACM, vol. 25, 509--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Lagae, A., and Dutré, P. 2006. An alternative for Wang tiles: Colored edges versus colored corners. ACM Transactions on Graphics 25, 4, 1442--1459. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Lagae, A., and Dutré, P. 2008. A comparison of methods for generating Poisson disk distributions. Computer Graphics Forum 27, 1, 114--129.Google ScholarGoogle ScholarCross RefCross Ref
  16. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.-M., Lu, L., and Yang, C. 2008. On centroidal Voronoi tessellation --- energy smoothness and fast computation. Tech. rep., Hong-Kong University and INRIA-ALICE Project Team.Google ScholarGoogle Scholar
  17. Lloyd, S. P. 1982. Least square quantization in PCM. IEEE Transactions on Information Theory 28, 2, 129--137.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. McCool, M., and Fiume, E. 1992. Hierarchical Poisson disk sampling distributions. Graphics Interface '92, 94--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. In Computer Graphics (Proceedings of SIGGRAPH 87), ACM, vol. 21, 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. 2000. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd ed. John Wiley and Sons Ltd. Google ScholarGoogle ScholarCross RefCross Ref
  21. Ostromoukhov, V., Donohue, C., and Jodoin, P.-M. 2004. Fast hierarchical importance sampling with blue noise properties. In ACM Transactions on Graphics (Proceedings of SIGGRAPH 2004), ACM, vol. 23, 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ostromoukhov, V. 2007. Sampling with polyominoes. In ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007), ACM, vol. 26, 78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Pharr, M., and Humphreys, G. 2004. Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Secord, A. 2002. Weighted Voronoi stippling. In Proceedings of the Second International Symposium on Non-photorealistic Animation and Rendering, ACM, 37--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Surazhsky, V., Alliez, P., and Gotsman, C. 2003. Isotropic remeshing of surfaces: A local parameterization approach. In Proceedings of the 12th International Meshing Roundtable, 215--224.Google ScholarGoogle Scholar
  26. Szabó, P. G., Markót, M. C., Csendes, T., Specht, E., Casado, L. G., and García, I. 2007. New Approaches to Circle Packing in a Square. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ulichney, R. 1987. Digital halftoning. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wei, L.-Y. 2008. Parallel Poisson disk sampling. In ACM Transactions on Graphics (Proceedings of SIGGRAPH 2008), ACM, vol. 27, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. White, K., Cline, D., and Egbert, P. 2007. Poisson disk point sets by hierarchical dart throwing. In Proceedings of the IEEE Symposium on Interactive Ray Tracing, 129--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Yellott, Jr., J. 1983. Spectral consequences of photoreceptor sampling in the rhesus retina. Science 12, 1, 382--385.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Capacity-constrained point distributions: a variant of Lloyd's method

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 28, Issue 3
          August 2009
          750 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1531326
          Issue’s Table of Contents

          Copyright © 2009 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 July 2009
          Published in tog Volume 28, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader