skip to main content
research-article

Physically guided liquid surface modeling from videos

Published:27 July 2009Publication History
Skip Abstract Section

Abstract

We present an image-based reconstruction framework to model real water scenes captured by stereoscopic video. In contrast to many image-based modeling techniques that rely on user interaction to obtain high-quality 3D models, we instead apply automatically calculated physically-based constraints to refine the initial model. The combination of image-based reconstruction with physically-based simulation allows us to model complex and dynamic objects such as fluid. Using a depth map sequence as initial conditions, we use a physically based approach that automatically fills in missing regions, removes outliers, and refines the geometric shape so that the final 3D model is consistent to both the input video data and the laws of physics. Physically-guided modeling also makes interpolation or extrapolation in the space-time domain possible, and even allows the fusion of depth maps that were taken at different times or viewpoints. We demonstrated the effectiveness of our framework with a number of real scenes, all captured using only a single pair of cameras.

Skip Supplemental Material Section

Supplemental Material

tps062_09.mp4

References

  1. Atcheson, B., Ihrke, I., Heidrich, W., Tevs, A., Bradley, D., Magnor, M., and Seidel, H.-P. 2008. Time-resolved 3d capture of non-stationary gas flows. In Proc. of ACM SIGGRAPH Asia 2008, vol. 27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bhat, K. S., Seitz, S. M., Hodgins, J. K., and Khosla, P. K. 2004. Flow-based video synthesis and editing. In Proc. of ACM SIGGRAPH 2004, 360--363. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bradley, D., Popa, T., Sheffer, A., Heidrich, W., and Boubekeur, T. 2008. Markerless garment capture. In Proc. of ACM SIGGRAPH 2008, vol. 27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Carlson, M., Mucha, P. J., Van Horn III, R. B., and Turk, G. 2002. Melting and flowing. In Proc. of SCA '02, 167--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.-P., and Thrun, S. 2008. Performance capture from sparse multi-view video. In Proc. of ACM SIGGRAPH '08, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Egnal, G., and Wildes, R. P. 2002. Detecting binocular half-occlusions: Empirical comparisons of five approaches. IEEE Trans. Pattern Anal. Mach. Intell. 24, 8, 1127--1133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. In Proc. of ACM SIGGRAPH '02, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Fattal, R., and Lischinski, D. 2004. Target-driven smoke animation. In Proc. of ACM SIGGRAPH 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proc. of SIGGRAPH '01, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models Image Process. 58, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Grant, I. 1997. Particle image velocimetry: a review. In Proc. of the Institution of Mechanical Engineers, vol. 211, 55C76.Google ScholarGoogle Scholar
  12. Hawkins, T., Einarsson, P., and Debevec, P. 2005. Acquisition of time-varying participating media. In Proc. of ACM SIGGRAPH 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hullin, M. B., Fuchs, M., Ihrke, I., Seidel, H.-P., and Lensch, H. P. A. 2008. Fluorescent immersion range scanning. In Proc. of ACM SIGGRAPH 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ihrke, I., Goldluecke, B., and Magnor, M. 2005. Reconstructing the geometry of flowing water. In ICCV '05, IEEE Computer Society, Washington, DC, USA, 1055--1060. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kanade, T., Rander, P., Vedula, S., and Saito, H. 1999. Virtualized reality: Digitizing a 3d time-varying event as is and in real time. In Mixed Reality, Merging Real and Virtual Worlds. 41--57.Google ScholarGoogle Scholar
  16. McNamara, A., Treuille, A., Popovic, Z., and Stam, J. 2004. Fluid control using the adjoint method. In Proc. of ACM SIGGRAPH 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Mitra, N. J., Flory, S., Ovsjanikov, M., Gelfand, N., Guibas, L., and Pottmann, H. 2007. Dynamic geometry registration. In Eurographics Symposium on Geometry Processing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Morris, N. J. W., and Kutulakos, K. N. 2005. Dynamic refraction stereo. In Proc. of International Conference on Computer Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Morris, N. J. W., and Kutulakos, K. N. 2007. Reconstructing the surface of inhomogeneous transparent scenes by scatter trace photography. In Proc. of 11th Int. Conf. Computer Vision.Google ScholarGoogle Scholar
  20. Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J., and Kang, S. B. 2006. Image-based plant modeling. In Proc. of ACM SIGGRAPH 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Schneider, R., and Kobbelt, L. 2001. Geometric fairing of irregular meshes for freeform surface design. Computer aided geometric design 18, 359--379. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Sharf, A., Alcantara, D. A., Lewiner, T., Greif, C., and Sheffer, A. 2008. Space-time surface reconstruction using incompressible flow. In Proc. of ACM SIGGRAPH Asia 2008, vol. 27, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Shi, J., and Tomasi, C. 1994. Good features to track. In Proc. of CVPR 1994, 593--600.Google ScholarGoogle Scholar
  24. Simon, S. V., Baker, S., Seitz, S., and Kanade, T. 2000. Shape and motion carving in 6d. In Computer Vision and Pattern Recognition.Google ScholarGoogle Scholar
  25. Sinha, S. N., Steedly, D., Szeliski, R., Agrawala, M., and Pollefeys, M. 2008. Interactive 3d architectural modeling from unordered photo collections. Proc. of SIGGRAPH Asia 2008 27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Stam, J. 1999. Stable fluids. In Proc. of ACM SIGGRAPH '99, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Staniforth, A., and Côté, J. 1991. Semi-lagrangian integration schemes for atmospheric models. Monthly Weather Review 119, 9, 2206.Google ScholarGoogle ScholarCross RefCross Ref
  28. Sun, J., Zheng, N.-N., and Shum, H.-Y. 2003. Stereo matching using belief propagation. IEEE Trans. Pattern Anal. Mach. Intell. 25, 7, 787. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Tan, P., Zeng, G., Wang, J., Kang, S. B., and Quan, L. 2007. Image-based tree modeling. In Proc. of ACM SIGGRAPH 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wand, M., Jenke, P., Huang, Q., Bokeloh, M., Guibas, L., and Schilling, A. 2007. Reconstruction of deforming geometry from time-varying point clouds. In Eurographics Symposium on Geometry Processing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wei, Y., Ofek, E., Quan, L., and Shum, H.-Y. 2005. Modeling hair from multiple views. In Proc. of ACM SIGGRAPH 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. White, R., Crane, K., and Forsyth, D. 2007. Capturing and animating occluded cloth. In Proc. of ACM SIGGRAPH 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Xiao, J., Fang, T., Tan, P., Zhao, P., and Quan, L. 2008. Image-based facade modeling. Proc. of SIGGRAPH Asia 2008 27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Yang, Q., Yang, R., Davis, J., and Nister, D. 2007. Spatial-depth super resolution for range images. In Proc. of CVPR 2007, vol. 0, 1--8.Google ScholarGoogle Scholar
  35. Zitnick, C. L., Kang, S. B., Uyttendaele, M., Winder, S., and Szeliski, R. 2004. High-quality video view interpolation using a layered representation. In Proc. of ACM SIGGRAPH '04, 600--608. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Zitnick, C. L., Kang, S. B., Uyttendaele, M., Winder, S., and Szeliski, R. 2004. High-quality video view interpolation using a layered representation. ACM Transactions on Graphics, 23, 3, 600--608. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Physically guided liquid surface modeling from videos

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 28, Issue 3
          August 2009
          750 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1531326
          Issue’s Table of Contents

          Copyright © 2009 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 July 2009
          Published in tog Volume 28, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader