Abstract
This paper presents a GPU-based method for interactive global illumination that integrates complex effects such as multi-bounce indirect lighting, glossy reflections, caustics, and arbitrary specular paths. Our method builds upon scattered data sampling and interpolation on the GPU. We start with raytraced shading points and partition them into coherent shading clusters using adaptive seeding followed by k-means. At each cluster center we apply final gather to evaluate its incident irradiance using GPU-based photon mapping. We approximate the entire photon tree as a compact illumination cut, thus reducing the final gather cost for each ray. The sampled irradiance values are then interpolated at all shading points to produce rendering. Our method exploits the spatial coherence of illumination to reduce sampling cost. We sample sparsely and the distribution of sample points conforms with the underlying illumination changes. Therefore our method is both fast and preserves high rendering quality. Although the same property has been exploited by previous caching and adaptive sampling methods, these methods typically require sequential computation of sample points, making them ill-suited for the GPU. In contrast, we select sample points adaptively in a single pass, enabling parallel computation. As a result, our algorithm runs entirely on the GPU, achieving interactive rates for scenes with complex illumination effects.
Supplemental Material
Available for Download
This document contains additional implementation details and pseudo-code for several major algorithms.
- Arikan, O., Forsyth, D. A., and O'Brien, J. F. 2005. Fast and detailed approximate global illumination by irradiance decomposition. ACM Trans. Graph. 24, 3, 1108--1114. Google Scholar
Digital Library
- Bala, K., Dorsey, J., and Teller, S. 1999. Radiance interpolants for accelerated bounded-error ray tracing. ACM Trans. Graph. 18, 3, 213--256. Google Scholar
Digital Library
- Dachsbacher, C., and Stamminger, M. 2005. Reflective shadow maps. In Proc. SI3D '05, 203--231. Google Scholar
Digital Library
- Gautron, P., Křivánek, J., Bouatouch, K., and Pattanaik, S. N. 2005. Radiance cache splatting: A GPU-friendly global illumination algorithm. In Proc. EGSR '05, 55--64. Google Scholar
Digital Library
- Hachisuka, T. 2005. GPU Gems 2 --- High-Quality Global Illumination Rendering Using Rasterization. 615--634.Google Scholar
- Harris, M., Sengupta, S., and Owens, J. 2007. GPU Gems 3 --- Parallel Prefix Sum (Scan) with CUDA. 851--876.Google Scholar
- Hašan, M., Pellacini, F., and Bala, K. 2006. Direct-to-indirect transfer for cinematic relighting. ACM Trans. Graph. 25, 3, 1089--1097. Google Scholar
Digital Library
- Hašan, M., Pellacini, F., and Bala, K. 2007. Matrix row-column sampling for the many-light problem. ACM Trans. Graph. 26, 3, 26:1--10. Google Scholar
Digital Library
- Hou, Q., Zhou, K., and Guo, B. 2008. BSGP: bulksynchronous GPU programming. ACM Trans. Graph. 27, 3, 1--12. Google Scholar
Digital Library
- Jensen, H. W. 2001. Realistic image synthesis using photon mapping. A. K. Peters, Ltd. Google Scholar
Digital Library
- Kajiya, J. T. 1986. The rendering equation. In Proc. SIGGRAPH '86, 143--150. Google Scholar
Digital Library
- Keller, A. 1997. Instant radiosity. In Proc. SIGGRAPH '97, 49--56. Google Scholar
Digital Library
- Křivánek, J., and Gautron, P. 2005. Radiance caching for efficient global illumination computation. IEEE Trans. Visualization and Computer Graphics 11, 5, 550--561. Google Scholar
Digital Library
- Nijasure, M., Pattanaik, S. N., and Goel, V. 2005. Real-time global illumination on GPUs. Journal of Graphics Tools 10, 2, 55--71.Google Scholar
Cross Ref
- Purcell, T. J., Donner, C., Cammarano, M., Jensen, H. W., and Hanrahan, P. 2003. Photon mapping on programmable graphics hardware. In Proc. Graphics Hardware, 41--50. Google Scholar
Digital Library
- Ritschel, T., Grosch, T., Kim, M. H., Seidel, H.-P., Dachsbacher, C., and Kautz, J. 2008. Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph. 27, 5, 129:1--8. Google Scholar
Digital Library
- Ritschel, T., Grosch, T., and Seidel, H.-P. 2009. Approximating dynamic global illumination in image space. In Proc. SI3D '09, to appear. Google Scholar
Digital Library
- Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins, S., Lake, A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T., and Hanrahan, P. 2008. Larrabee: a many-core x86 architecture for visual computing. ACM Trans. Graph. 27, 3, 1--15. Google Scholar
Digital Library
- Shanmugam, P., and Arikan, O. 2007. Hardware accelerated ambient occlusion techniques on GPUs. In Proc. SI3D '07, 73--80. Google Scholar
Digital Library
- Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, lowfrequency lighting environments. ACM Trans. Graph. 21, 3, 527--536. Google Scholar
Digital Library
- Tole, P., Pellacini, F., Walter, B., and Greenberg, D. P. 2002. Interactive global illumination in dynamic scenes. ACM Trans. Graph. 21, 3, 537--546. Google Scholar
Digital Library
- Wald, I., Kollig, T., Benthin, C., Keller, A., and Slusallek, P. 2002. Interactive global illumination using fast ray tracing. In Proc. Eurographics Workshop on Rendering, 15--24. Google Scholar
Digital Library
- Walter, B., Drettakis, G., and Parker, S. 1999. Interactive rendering using the render cache. In Proc. Eurographics Workshop on Rendering, 235--246. Google Scholar
Digital Library
- Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., and Greenberg, D. P. 2005. Lightcuts: a scalable approach to illumination. ACM Trans. Graph. 24, 3, 1098--1107. Google Scholar
Digital Library
- Ward, G. J., Rubinstein, F. M., and Clear, R. D. 1988. A ray tracing solution for diffuse interreflection. In Proc. SIGGRAPH '88, 85--92. Google Scholar
Digital Library
- Wyman, C., and Davis, S. 2006. Interactive image-space techniques for approximating caustics. In Proc. SI3D '06, 153--160. Google Scholar
Digital Library
- Zhou, K., Hou, Q., Wang, R., and Guo, B. 2008. Real-time kd-tree construction on graphics hardware. ACM Trans. Graph. 27, 5, 126:1--11. Google Scholar
Digital Library
Index Terms
An efficient GPU-based approach for interactive global illumination
Recommendations
An efficient GPU-based approach for interactive global illumination
SIGGRAPH '09: ACM SIGGRAPH 2009 papersThis paper presents a GPU-based method for interactive global illumination that integrates complex effects such as multi-bounce indirect lighting, glossy reflections, caustics, and arbitrary specular paths. Our method builds upon scattered data sampling ...
Hardware-accelerated global illumination by image space photon mapping
HPG '09: Proceedings of the Conference on High Performance Graphics 2009We describe an extension to photon mapping that recasts the most expensive steps of the algorithm -- the initial and final photon bounces -- as image-space operations amenable to GPU acceleration. This enables global illumination for real-time ...
Progressive Point-Based Global Illumination
DMDCM '11: Proceedings of the 2011 Workshop on Digital Media and Digital Content ManagementThis paper proposes a progressive point-based global illumination algorithm to render complex scenes with limited time and memory. Our algorithm includes multi passes. The first pass is ray tracing, and the next passes are point cloud generating and ...





Comments