ABSTRACT
Empirical evidence suggests that hashing is an effective strategy for dimensionality reduction and practical nonparametric estimation. In this paper we provide exponential tail bounds for feature hashing and show that the interaction between random subspaces is negligible with high probability. We demonstrate the feasibility of this approach with experimental results for a new use case --- multitask learning with hundreds of thousands of tasks.
References
- Achlioptas, D. (2003). Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of Computer and System Sciences, 66, 671--687. Google Scholar
- Bennett, J., & Lanning, S. (2007). The Netflix Prize. Proceedings of Conference on Knowledge Discovery and Data Mining Cup and Workshop 2007.Google Scholar
- Bernstein, S. (1946). The theory of probabilities. Moscow: Gastehizdat Publishing House.Google Scholar
- Daume, H. (2007). Frustratingly easy domain adaptation. Annual Meeting of the Association for Computational Linguistics (p. 256).Google Scholar
- Ganchev, K., & Dredze, M. (2008). Small statistical models by random feature mixing. Workshop on Mobile Language Processing, Annual Meeting of the Association for Computational Linguistics.Google Scholar
- Gionis, A., Indyk, P., & Motwani, R. (1999). Similarity search in high dimensions via hashing. Proceedings of the 25th VLDB Conference (pp. 518--529). Edinburgh, Scotland: Morgan Kaufmann. Google Scholar
- Langford, J., Li, L., & Strehl, A. (2007). Vowpal wabbit online learning project (Technical Report). http://hunch.net/?p=309.Google Scholar
- Ledoux, M. (2001). The concentration of measure phenomenon. Providence, RI: AMS.Google Scholar
- Li, P., Church, K., & Hastie, T. (2007). Conditional random sampling: A sketch-based sampling technique for sparse data. In B. Schöölkopf, J. Platt and T. Hoffman (Eds.), Advances in neural information processing systems 19, 873--880. Cambridge, MA: MIT Press.Google Scholar
- Rahimi, A., & Recht, B. (2008). Random features for large-scale kernel machines. In J. Platt, D. Koller, Y. Singer and S. Roweis (Eds.), Advances in neural information processing systems 20. Cambridge, MA: MIT Press.Google Scholar
- Rahimi, A., & Recht, B. (2009). Randomized kitchen sinks. In L. Bottou, Y. Bengio, D. Schuurmans and D. Koller (Eds.), Advances in neural information processing systems 21. Cambridge, MA: MIT Press.Google Scholar
- Shi, Q., Petterson, J., Dror, G., Langford, J., Smola, A., Strehl, A., & Vishwanathan, V. (2009). Hash kernels. Proc. Intl. Workshop on Artificial Intelligence and Statistics 12.Google Scholar

Alex Smola

Comments