skip to main content
research-article

Auditory self-motion simulation is facilitated by haptic and vibrational cues suggesting the possibility of actual motion

Published:03 September 2009Publication History
Skip Abstract Section

Abstract

Sound fields rotating around stationary blindfolded listeners sometimes elicit auditory circular vection, the illusion that the listener is physically rotating. Experiment 1 investigated whether auditory circular vection depends on participants' situational awareness of “movability,” that is, whether they sense/know that actual motion is possible or not. While previous studies often seated participants on movable chairs to suspend the disbelief of self-motion, it has never been investigated whether this does, in fact, facilitate auditory vection. To this end, 23 blindfolded participants were seated on a hammock chair with their feet either on solid ground (“movement impossible”) or suspended (“movement possible”) while listening to individualized binaural recordings of two sound sources rotating synchronously at 60°/s. Although participants never physically moved, situational awareness of movability facilitated auditory vection. Moreover, adding slight vibrations like the ones resulting from actual chair rotation increased the frequency and intensity of vection. Experiment 2 extended these findings and showed that nonindividualized binaural recordings were as effective in inducing auditory circular vection as individualized recordings. These results have important implications both for our theoretical understanding of self-motion perception and for the applied field of self-motion simulations, where vibrations, nonindividualized binaural sound, and the cognitive/perceptual framework of movability can typically be provided at minimal cost and effort.

References

  1. Andersen, G. J. and Braunstein, M. L. 1985. Induced self-motion in central vision. J. Exper. Psych. 11, 2, 122--132.Google ScholarGoogle Scholar
  2. Banbury, S., Tremblay, S., and Banbury, S. 2004. A Cognitive Approach to Situation Awareness. Ashgate Publishing, Burlington, VT.Google ScholarGoogle Scholar
  3. Begault, D. R. 1994. 3-D Sound for Virtual Reality and Multimedia. Academic Press, San Diego, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Beierholm, U., Kording, K., Shams, L., and Ma, W. J. 2008. Comparing bayesian models for multisensory cue combination without mandatory integration. In Advances in Neural Information Processing Systems 20, J. Platt, D. Koller, Y. Singer, and S. Roweis, Eds. MIT Press, Cambridge, MA, 81--88.Google ScholarGoogle Scholar
  5. Berthoz, A., Pavard, B., and Young, L. R. 1975. Perception of linear horizontal self-motion induced by peripheral vision (linear vection) -basic characteristics and visual-vestibular interactions. Exper. Brain Res. 23, 5, 471--489.Google ScholarGoogle ScholarCross RefCross Ref
  6. Blauert, J. and Allen, J. S. 1997. Spatial Hearing: The Psychophysics of Human Sound Localization. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  7. Bles, W. 1981. Stepping around: Circular vection and coriolis effects. In Attention and Performance IX, J. Long and A. Baddeley, Eds. Erlbaum, Hillsdale, NJ, 47--61.Google ScholarGoogle Scholar
  8. Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences. Erlbaum, Hillsdale, NJ.Google ScholarGoogle Scholar
  9. Dichgans, J. and Brandt, T. 1978. Visual-vestibular interaction: Effects on self-motion perception and postural control. In Perception Handbook of Sensory Physiology, vol. VIII. Springer, Berlin, 756--804.Google ScholarGoogle Scholar
  10. Dodge, R. 1923. Thresholds of rotation. J. Exper. Psychol. 6, 107--137.Google ScholarGoogle ScholarCross RefCross Ref
  11. Endsley, M. R., Bolté, B., Jones, D. G., and Betty Bolté, D. G. J. 2003. Designing for Situation Awareness. Taylor&Francis, London.Google ScholarGoogle Scholar
  12. Ernst, M. O. and Banks, M. S. 2002. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429--433.Google ScholarGoogle ScholarCross RefCross Ref
  13. Ernst, M. O. and Bülthoff, H. H. 2004. Merging the senses into a robust percept. Trends Cognitive Sci. 8, 4, 162--169.Google ScholarGoogle ScholarCross RefCross Ref
  14. Feuereissen, D. 2008. Getting the reality part straight: Does jitter and suspension of the human body increase auditory circular vection? Bachelor's thesis, Department of Computer Science in Media, Furtwangen University, Germany. http://www.kyb.mpg.de/publication.html?publ = 5071.Google ScholarGoogle Scholar
  15. Gekhman, B. 1991. Audiokinetic nystagmus. Sensornye Sistemy 5, 2, 71--78.Google ScholarGoogle Scholar
  16. Hennebert, P. E. 1960. Audiokinetic nystagmus. J. Auditory Res. 1, 1, 84--87.Google ScholarGoogle Scholar
  17. Hettinger, L. J. 2002. Illusory self-motion in virtual environments. In Handbook of Virtual Environments, K. M. Stanney, Ed. Lawrence Erlbaum, Hillsdale, NJ, 471--492.Google ScholarGoogle Scholar
  18. Khasnis, A. and Gokula, R. M. 2003. Romberg's test. J. Postgrad. Med. 49, 2, 169--172. http://www.jpgmonline.com/text.asp?2003/49/2/169/894Google ScholarGoogle Scholar
  19. Lackner, J. R. 1977. Induction of illusory self-rotation and nystagmus by a rotating sound-field. Aviat. Space Environ. Med. 48, 2, 129--131.Google ScholarGoogle Scholar
  20. Langendijk, E. and Bronkhorst, A. 2002. Contribution of spectral cues to human sound localization. J. Acoust. Soc. Amer. 112, 4, 1583--1596.Google ScholarGoogle ScholarCross RefCross Ref
  21. Larsson, P., Västfjäll, D., and Kleiner, M. 2004. Perception of self-motion and presence in auditory virtual environments. In Proceedings of the 7th Annual Workshop of Presence. ACM, New York, 252--258.Google ScholarGoogle Scholar
  22. Lepecq, J. C., Giannopulu, I., and Baudonniere, P. M. 1995. Cognitive effects on visually induced body motion in children. Perception 24, 4, 435--449.Google ScholarGoogle ScholarCross RefCross Ref
  23. Loomis, J., Klatzky, R. L., and Golledge, R. G. 1999. Auditory distance perception in real, virtual, and mixed environments. In Mixed Reality: Merging Real and Virtual Worlds, Ohta, Y, and Tamura, H. Springer, Berlin, 201--214.Google ScholarGoogle Scholar
  24. Mach, E. 1875. Grundlinien der Lehre von der Bewegungsempfindung. Engelmann, Leipzig, Germany.Google ScholarGoogle Scholar
  25. Marmekarelse, A. M. and Bles, W. 1977. Circular vection and human posture ii: Does the auditory-system play a role. Agressologie 18, 6, 329--333.Google ScholarGoogle Scholar
  26. Mergner, T. and Becker, W. 1990. Perception of horizontal self-rotation: Multisensory and cognitive aspects. In Perception&Control of Self-Motion, R. Warren and A. H. Wertheim, Eds. Erlbaum, New Jersey, 219--263.Google ScholarGoogle Scholar
  27. Moller, H., Sorensen, M., Jensen, C., and Hammershoi, D. 1996. Binaural technique: Do we need individual recordings? J. Audio Engin. Soc. 44, 6, 451--469.Google ScholarGoogle Scholar
  28. Palmisano, S., Burke, D., and Allison, R. S. 2003. Coherent perspective jitter induces visual illusions of self-motion. Perception 32, 1, 97--110.Google ScholarGoogle ScholarCross RefCross Ref
  29. Palmisano, S., Gillam, B. J., and Blackburn, S. G. 2000. Global-perspective jitter improves vection in central vision. Perception 29, 1, 57--67.Google ScholarGoogle ScholarCross RefCross Ref
  30. Pavard, B. and Berthoz, A. 1977. Linear acceleration modifies perceived velocity of a moving visual scene. Perception 6, 5, 529--540.Google ScholarGoogle ScholarCross RefCross Ref
  31. Pick, H. L., Wagner, D., Rieser, J. J., and Garing, A. E. 1999. The recalibration of rotational locomotion. J. Exper. Psych. 25, 5, 1179--1188.Google ScholarGoogle Scholar
  32. Riecke, B. E., Feuereissen, D., and Rieser, J. J. 2008a. Auditory self-motion illusions (“circular vection”) can be facilitated by vibrations and the potential for actual motion. In Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (APGV'08). ACM, New York, 147--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Riecke, B. E., Feuereissen, D., and Rieser, J. J. 2008b. Contribution and interaction of auditory and biomechanical cues for self-motion illusions (“circular vection”). In Proceedings of the CyberWalk Workshop. Springer, Berlin.Google ScholarGoogle Scholar
  34. Riecke, B. E., Schulte-Pelkum, J., Avraamides, M. N., von der Heyde, M., and Bülthoff, H. H. 2006. Cognitive factors can influence self-motion perception (vection) in virtual reality. ACM Trans. Appl. Perception 3, 3, 194--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Riecke, B. E., Schulte-Pelkum, J., and Caniard, F. 2006. Visually induced linear vection is enhanced by small physical accelerations. In Proceedings of the 7th International Multisensory Research Forum (IMRF). ACM, New York.Google ScholarGoogle Scholar
  36. Riecke, B. E., Schulte-Pelkum, J., Caniard, F., and Bülthoff, H. H. 2005a. Influence of auditory cues on the visually-induced self-motion illusion (circular vection) in virtual reality. In Proceedings of 8th Annual Workshop Presence 2005. MIT, Cambridge, MA, 49--57.Google ScholarGoogle Scholar
  37. Riecke, B. E., Schulte-Pelkum, J., Caniard, F., and Bülthoff, H. H. 2005b. Towards lean and elegant self-motion simulation in virtual reality. In Proceedings of IEEE Virtual Reality. IEEE, Los Alamitos, CA, 131--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Riecke, B. E., Västfjäll, D., Larsson, P., and Schulte-Pelkum, J. 2005. Top-down and multi-modal influences on self-motion perception in virtual reality. In Proceedings of the 11th Annual Internation Conference on Human-Computer Interaction (HCI'05). Springer, Berlin, 1--10.Google ScholarGoogle Scholar
  39. Riecke, B. E., von der Heyde, M., and Bülthoff, H. H. 2005. Visual cues can be sufficient for triggering automatic, reflex-like spatial updating. ACM Trans. Appl. Perception 2, 3, 183--215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Riecke, B. E., Väljamäe, A., and Schulte-Pelkum, J. 2009. Moving sounds enhance the visually-induced self-motion illusion (circular vection) in virtual reality. ACM Trans. Appl. Perception 6, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Rieser, John, J., Pick, Herbert, L., Ashmead, Daniel, H., and Garing, Anne, E. 1995. Calibration of human locomotion and models of perceptual-motor organization. J. Exper. Psych. 21, 3, 480--497.Google ScholarGoogle Scholar
  42. Sakamoto, S., Osada, Y., Suzuki, Y., and Gyoba, J. 2004. The effects of linearly moving sound images on self-motion perception. Acoust. Sci. Tech. 25, 100--102.Google ScholarGoogle ScholarCross RefCross Ref
  43. Schulte-Pelkum, J. 2008. Perception of self-motion: Vection experiments in multi-sensory virtual environments. Ph.D. thesis, Ruhr-Universität Bochum.Google ScholarGoogle Scholar
  44. Schulte-Pelkum, J. and Riecke, B. E. 2009. An integrative approach to presence and self-motion perception research. In Immersed in Media Experiences: Presence Psychology and Design (Handbook of Presence). Lawrence Erlbaum, Hillsdale, NJ.Google ScholarGoogle Scholar
  45. Schulte-Pelkum, J., Riecke, B. E., and Bülthoff, H. H. 2004. Vibrational cues enhance believability of ego-motion simulation. In Proceedings of the International Multisensory Research Forum (IMRF). www.kyb.mpg.de/publication.html?publ=2766.Google ScholarGoogle Scholar
  46. Shilling, R. D. and Shinn-Cunningham, B. 2002. Virtual auditory displays. In Handbook of Virtual Environments, K. M. Stanney, Ed. Lawrence Erlbaum, 65--91.Google ScholarGoogle Scholar
  47. Väljamäe, A., Larsson, P., Västfjäll, D., and Kleiner, M. 2004. Auditory presence, individualized head-related transfer functions, and illusory ego-motion in virtual environments. In Proceedings of 7th Annual Workshop of Presence. MIT, Cambridge, MA, 141--147.Google ScholarGoogle Scholar
  48. Väljamäe, A., Larsson, P., Västfjäll, D., and Kleiner, M. 2006. Vibrotactile enhancement of auditory induced self-motion and spatial presence. J. Acoust. Engin. Soc. 54, 10, 954--963.Google ScholarGoogle Scholar
  49. von Helmholtz, H. 1867. Handbuch der physiologischen Optik. Voss, Leipzig.Google ScholarGoogle Scholar
  50. Väljamäe, A. 2005. Self-motion and presence in the perceptual optimization of a multisensory virtual reality environment. Licentiate dissertation, Chalmers University of Technology, Göteborg, Sweden.Google ScholarGoogle Scholar
  51. Väljamäe, A. 2007. Sound for multi-sensory motion simulators. Ph.D. thesis, Chalmers University of Technology, Göteborg, Sweden.Google ScholarGoogle Scholar
  52. Väljamäe, A., Larsson, P., Västfjäll, D., and Kleiner, M. 2009. Auditory landmarks enhance circular vection in multi-modal virtual reality. J. Acoust. Engin. Soc. To appear.Google ScholarGoogle Scholar
  53. Warren, R. and Wertheim, A. H., Eds. 1990. Perception&Control of Self-Motion. Erlbaum, Hillsdale, NJ.Google ScholarGoogle Scholar
  54. Wong, S. C. P. and Frost, B. J. 1981. The effect of visual-vestibular conflict on the latency of steady-state visually induced subjective rotation. Perception Psychophys. 30, 3, 228--236.Google ScholarGoogle ScholarCross RefCross Ref
  55. Wright, W. G., Dizio, P., and Lackner, J. R. 2006. Perceived self-motion in two visual contexts: Dissociable mechanisms underlie perception. J. Vestib. Res. 16, 1--2, 23--28.Google ScholarGoogle Scholar

Index Terms

  1. Auditory self-motion simulation is facilitated by haptic and vibrational cues suggesting the possibility of actual motion

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader