skip to main content
10.1145/1661412.1618465acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Harmonic shells: a practical nonlinear sound model for near-rigid thin shells

Published:01 December 2009Publication History

ABSTRACT

We propose a procedural method for synthesizing realistic sounds due to nonlinear thin-shell vibrations. We use linear modal analysis to generate a small-deformation displacement basis, then couple the modes together using nonlinear thin-shell forces. To enable audio-rate time-stepping of mode amplitudes with mesh-independent cost, we propose a reduced-order dynamics model based on a thin-shell cubature scheme. Limitations such as mode locking and pitch glide are addressed. To support fast evaluation of mid-frequency mode-based sound radiation for detailed meshes, we propose far-field acoustic transfer maps (FFAT maps) which can be precomputed using state-of-the-art fast Helmholtz multipole methods. Familiar examples are presented including rumbling trash cans and plastic bottles, crashing cymbals, and noisy sheet metal objects, each with increased richness over linear modal sound models.

References

  1. Adrien, J.-M. 1991. The missing link: Modal synthesis. In Representations of musical signals. MIT Press, Cambridge, MA, USA, 269--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. An, S. S., Kim, T., and James, D. L. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Trans. Graph. 27, 5, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baraff, D., and Witkin, A. P. 1998. Large steps in cloth simulation. In Proceedings of SIGGRAPH 98, Computer Graphics Proceedings, Annual Conference Series, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bathe, K.-J. 1996. Finite Element Procedures, second ed. Prentice Hall.Google ScholarGoogle Scholar
  5. Bergou, M., Wardetzky, M., Harmon, D., Zorin, D., and Grinspun, E. 2006. A quadratic bending model for inextensible surfaces. In Eurographics Symposium on Geometry Processing, 227--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bilbao, S. 2008. A family of conservative finite difference schemes for the dynamical von Karman plate equations. Numerical Methods for Partial Differential Equations 24, 1.Google ScholarGoogle ScholarCross RefCross Ref
  7. Bonneel, N., Drettakis, G., Tsingos, N., Viaud-Delmon, I., and James, D. 2008. Fast Modal Sounds with Scalable Frequency-Domain Synthesis. ACM Transactions on Graphics 27, 3 (Aug.), 24:1--24:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 28--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Brown, C. P., and Duda, R. O. 1998. A Structural Model for Binaural Sound Synthesis. IEEE Trans. on Speech and Audio Processing 6, 5.Google ScholarGoogle ScholarCross RefCross Ref
  10. Chaigne, A., Touzé, C., and Thomas, O. 2005. Nonlinear vibrations and chaos in gongs and cymbals. Acoustical Science and Technology 26, 5, 403--409.Google ScholarGoogle ScholarCross RefCross Ref
  11. Chapelle, D., and Bathe, K. 2003. The finite element analysis of shells. Springer.Google ScholarGoogle Scholar
  12. Choi, M., Yong Woo, S., and Ko, H. 2007. Real-Time Simulation of Thin Shells. In Computer Graphics Forum, vol. 26, Blackwell Publishing Ltd, 349--354.Google ScholarGoogle Scholar
  13. Cirak, F., and Ortiz, M. 2001. Fully C 1-conforming subdivision elements for finite deformation thin-shell analysis. Internat. J. Numer. Methods Engrg. 51, 813--833.Google ScholarGoogle ScholarCross RefCross Ref
  14. Cirak, F., Ortiz, M., and Schroder, P. 2000. Subdivision surfaces: A new paradigm for thin-shell finite-element analysis. Internat. J. Numer. Methods Engrg. 47, 2039--2072.Google ScholarGoogle ScholarCross RefCross Ref
  15. Cook, P. 2002. Real Sound Synthesis for Interactive Applications. A. K. Peters. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Cremer, L., Heckl, M., and Ungar, E. 1990. Structure Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies, 2nd ed. Springer, January.Google ScholarGoogle Scholar
  17. Desmet, W. 2002. Mid-frequency vibro-acoustic modelling: challenges and potential solutions. In Proceedings of ISMA 2002, vol. II.Google ScholarGoogle Scholar
  18. Fletcher, N. 1999. The nonlinear physics of musical instruments. Reports on Progress in Physics 62, 5, 723--764.Google ScholarGoogle ScholarCross RefCross Ref
  19. Frendi, A., Maestrello, L., and Bayliss, A. 1994. Coupling between plate vibration and acoustic radiation. Journal of Sound and Vibration 177, 2, 207--226.Google ScholarGoogle ScholarCross RefCross Ref
  20. Garg, A., Grinspun, E., Wardetzky, M., and Zorin, D. 2007. Cubic shells. In ACM SIGGRAPH Symposium on Computer Animation, 91--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Gingold, Y., Secord, A., Han, J. Y., Grinspun, E., and Zorin, D. 2004. A Discrete Model for Inelastic Deformation of Thin Shells. Tech. rep., Courant Institute of Mathematical Sciences, New York University, Aug.Google ScholarGoogle Scholar
  22. Green, S., Turkiyyah, G., and Storti, D. 2002. Subdivision-based multilevel methods for large scale engineering of thin shells. In Proceedings of ACM Solid Modeling, 265--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Grinspun, E., Hirani, A., Desbrun, M., and Schroder, P. 2003. Discrete shells. In ACM SIGGRAPH Symposium on Computer Animation, 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Gumerov, N., and Duraiswami, R. 2005. Fast Multipole Methods for the Helmholtz Equation in Three Dimensions. Elsevier Science.Google ScholarGoogle Scholar
  25. Hamming, R. W. 1983. Digital Filters. Prentice-Hall, Englewood Cliffs, NJ.Google ScholarGoogle Scholar
  26. James, D. L., and Pai, D. K. 2002. DyRT: Dynamic response textures for real time deformation simulation with graphics hardware. ACM Transactions on Graphics 21, 3 (July), 582--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. James, D. L., and Pai, D. K. 2004. BD-Tree: Output-sensitive collision detection for reduced deformable models. ACM Transactions on Graphics 23, 3 (Aug.), 393--398. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. James, D. L., Barbič, J., and Pai, D. K. 2006. Precomputed Acoustic Transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Transactions on Graphics 25, 3 (July), 987--995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Krysl, P., Lall, S., and Marsden, J. E. 2001. Dimensional model reduction in non-linear finite element dynamics of solids and structures. International Journal for Numerical Methods in Engineering 51, 479--504.Google ScholarGoogle ScholarCross RefCross Ref
  30. Liu, Y. J. 2009. Fast Multipole Boundary Element Method: Theory and Applications in Engineering. Cambridge University Press, Cambridge.Google ScholarGoogle Scholar
  31. Malatkar, P. 2003. Nonlinear vibrations of cantilever beams and plates. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.Google ScholarGoogle Scholar
  32. Moussaoui, F., and Benamar, R. 2002. Non-linear vibrations of shell-type structures: a review with bibliography. Journal of Sound and Vibration 255, 1, 161--184.Google ScholarGoogle ScholarCross RefCross Ref
  33. Nayfeh, A., and Mook, D. 1979. Nonlinear oscillations. Wiley-Interscience.Google ScholarGoogle Scholar
  34. Nayfeh, A., and Nayfeh, S. 1995. Nonlinear normal modes of a continuous system with quadratic nonlinearities. Journal of Vibration and Acoustics 117, 199.Google ScholarGoogle ScholarCross RefCross Ref
  35. O'Brien, J. F., Cook, P. R., and Essl, G. 2001. Synthesizing sounds from physically based motion. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 529--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. O'Brien, J. F., Shen, C., and Gatchalian, C. M. 2002. Synthesizing sounds from rigid-body simulations. In ACM SIGGRAPH Symposium on Computer Animation, 175--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Pentland, A., and Williams, J. 1989. Good vibrations: Modal dynamics for graphics and animation. In Computer Graphics (Proceedings of SIGGRAPH 89), 215--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Pierce, J., and Van Duyne, S. 1997. A passive nonlinear digital filter design which facilitates physics-based sound synthesis of highly nonlinear musical instruments. The Journal of the Acoustical Society of America 101, 1120.Google ScholarGoogle ScholarCross RefCross Ref
  39. Raghuvanshi, N., and Lin, M. C. 2006. Interactive Sound Synthesis for Large Scale Environments. In SI3D '06: Proceedings of the 2006 symposium on Interactive 3D graphics and games, ACM Press, New York, NY, USA, 101--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Shabana, A. A. 1990. Theory of Vibration, Volume II: Discrete and Continuous Systems. Springer--Verlag, New York, NY.Google ScholarGoogle Scholar
  41. Shabana, A. 2005. Dynamics of Multibody Systems, 3rd ed. Cambridge.Google ScholarGoogle Scholar
  42. Shen, L., and Liu, Y. J. 2007. An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation. Computational Mechanics 40, 3, 461--472.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically Deformable Models. In Computer Graphics (Proceedings of SIGGRAPH 87), 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Touzé, C., Thomas, O., and Chaigne, A. 2004. Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes. Journal of Sound and Vibration 273, 1--2, 77--101.Google ScholarGoogle ScholarCross RefCross Ref
  45. van den Doel, K., and Pai, D. K. 1996. Synthesis of shape dependent sounds with physical modeling. In Intl Conf. on Auditory Display.Google ScholarGoogle Scholar
  46. van den Doel, K., Kry, P. G., and Pai, D. K. 2001. FoleyAutomatic: Physically Based Sound Effects for Interactive Simulation and Animation. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 537--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Vorlander, M. 2007. Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality. Springer Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Wu, S. 2008. Methods for reconstructing acoustic quantities based on acoustic pressure measurements. The Journal of the Acoustical Society of America 124, 5, 2680.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Harmonic shells: a practical nonlinear sound model for near-rigid thin shells

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in
              • Published in

                cover image ACM Conferences
                SIGGRAPH Asia '09: ACM SIGGRAPH Asia 2009 papers
                December 2009
                669 pages
                ISBN:9781605588582
                DOI:10.1145/1661412

                Copyright © 2009 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 1 December 2009

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

                Acceptance Rates

                SIGGRAPH Asia '09 Paper Acceptance Rate70of275submissions,25%Overall Acceptance Rate178of869submissions,20%

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader