skip to main content
10.1145/1667239.1667254acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Interactive sound rendering

Published:03 August 2009Publication History

ABSTRACT

An overview of algorithmic and software technologies related to interactive sound rendering. The course lectures cover three main topics: physically based techniques to synthesize sounds generated from colliding objects or liquid sounds, efficient computation of sound propagation paths based on reflection or diffraction paths and converting those paths into audible sound, exploiting the computational capabilities of current multi-core commodity processors for real-time sound propagation and sound rendering for gaming and interactive applications. The presentations include audio demonstrations that show the meaning of various processing components in practice.

References

  1. F. Antonacci, M. Foco, A. Sarti, and S. Tubaro, "Fast modeling of acoustic reflections and diffraction in complex environments using visibility diagrams. In Proc. 12th European Signal Processing Conference (EUSIPCO '04), pp. 1773--1776, 2004.Google ScholarGoogle Scholar
  2. P. Calamia, B. Markham, and U. P. Svensson, "Diffraction culling for virtual-acoustic simulations," Acta Acustica united with Acustica, Special Issue on Virtual Acoustics, 94(6), pp. 907--920, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  3. P. Calamia and U. P. Svensson, "Fast time-domain edge-diffraction calculations for interactive acoustic simulations," EURASIP Journal on Advances in Signal Processing, Special Issue on Spatial Sound and Virtual Acoustics, Article ID 63560, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Chandak, C. Lauterbach, M. Taylor, Z. Ren, and D. Manocha, "ADFrustum: Adaptive frustum tracing for interactive sound propagation," IEEE Trans. on Visualization and Computer Graphics, 14, pp. 1707--1722, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. Kouyoumjian and P. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. In Proc. IEEE, vol. 62, pp. 1448--1461, 1974.Google ScholarGoogle ScholarCross RefCross Ref
  6. T. Lokki, U. P. Svensson, and L. Savioja, "An efficient auralization of edge diffraction," In Proc. Aud. Engr. Soc. 21st Intl. Conf. on Architectural Acoustics and Sound Reinforcement, pp. 166--172, 2002.Google ScholarGoogle Scholar
  7. D. Schröder and A. Pohl, "Real-time hybrid simulation method including edge diffraction," In Proc. EAA Symposium on Auralization, Otaniemi, 2009.Google ScholarGoogle Scholar
  8. U. P. Svensson, R. I. Fred, and J. Vanderkooy, "An analytic secondary-source model of edge diffraction impulse responses," J. Acoust. Soc. Am., 106(5), pp. 2331--2344, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  9. U. P. Svensson and P. Calamia, "Edge-diffraction impulse responses near specular-zone and shadow-zone boundaries," Acta Acustica united with Acustica, 92(4), pp. 501--512, 2006.Google ScholarGoogle Scholar
  10. M. Taylor, A. Chandak, Z. Ren, C. Lauterbach, and D. Manocha, "Fast edge-diffraction for sound propagation in complex virtual environments," In Proc. EAA Symposium on Auralization, Otaniemi, 2009.Google ScholarGoogle Scholar
  11. R. Torres, U. P. Svensson, and M. Kleiner, "Computation of edge diffraction for more accurate room acoustics auralization," J. Acoust. Soc. Am., 109(2), pp. 600--610, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  12. N. Tsingos, T. Funkhouser, A. Ngan, and I. Carlbom, "Modeling acoustics in virtual environments using the Uniform Theory of Diffraction," In Proc. ACM Computer Graphics (SIGGRAPH '01), pp. 545--552, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. N. Tsingos, I. Carlbom, G. Elko, T. Funkhouser, and R. Kubli, "Validation of acoustical simulations in the Bell Labs box," IEEE Computer Graphics and Applications, 22(4), pp. 28--37, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. N. Tsingos and J.-D. Gascuel, "Soundtracks for computer animation: Sound rendering in dynamic environments with occlusions," In Proc. Graphics Interface97, Kelowna, BC, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. N. Tsingos and J.-D. Gascuel, "Fast rendering of sound occlusion and diffraction effects for virtual acoustic environments," In Proc. 104th Aud. Engr. Soc. Conv., 1998. Preprint no. 4699.Google ScholarGoogle Scholar
  16. Fouad, H., Ballas, J., and Hahn, J. Perceptually based scheduling algorithms for real-time synthesis of complex sonic environments. In Proceedings of the International Conference on Auditory Display (Palo Alto, CA, Nov. 2--5). ICAD, 1997, 1--5.Google ScholarGoogle Scholar
  17. Funkhouser, T., Carlbom, I., Elko, G., Pingali, G., Sondhi, M., and West, J. A beam-tracing approach to acoustic modeling for interactive virtual environments. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH) (Orlando, FL, July 19--24). ACM Press, New York, 1998, 21--32; doi.acm.org/10.1145/280814.280818. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Krokstad, A., Strom, S., and Sorsdal, S. Calculating the acoustical room response by the use of a ray tracing technique. Journal of Sound and Vibration 8, 1 (July 1968), 118--125.Google ScholarGoogle ScholarCross RefCross Ref
  19. Lauterbach, C., Chandak, A., and Manocha, D. Interactive sound rendering in complex and dynamic scenes using frustum tracing; gamma.cs.unc.edu/SOUND/. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lauterbach, C., Yoon, S.-E., Tuft, D., and Manocha, D. RT-DEFORM: Interactive ray tracing of dynamic scenes using BVHs. In Proceedings of the IEEE Symposium on Interactive Ray Tracing (Salt Lake City). IEEE Press, 2006, 39--46.Google ScholarGoogle Scholar
  21. O'Brien, J., Shen, C., and Gatchalian, C. Synthesizing sounds from rigid-body simulations. In the ACM SIGGRAPH 2002 Symposium on Computer Animation (San Antonio, TX, July 21--22). ACM Press, New York, 2002, 175--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Raghuvanshi, N. and Lin, M. Interactive sound synthesis for large-scale environments. In Proceedings of the ACM Symposium on Interactive 3D Graphics and Games (Redwood City, CA, Mar. 14--16). ACM Press, New York, 2006, 101--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Sek, A. and Moore, B. Frequency discrimination as a function of frequency, measured in several ways. Journal of the Acoustical Society of America 97, 4 (Apr. 1995), 2479--2486.Google ScholarGoogle Scholar
  24. van den Doel, K., Kry, P., and Pai, D. Foleyautomatic: Physically based sound effects for interactive simulation and animation. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH) (Los Angeles, Aug. 12--17). ACM Press, New York, 2001, 537--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. van den Doel, K. and Pai, D. The sounds of physical shapes. Presence 7, 4 (Aug. 1998), 382--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Wald, I., Boulos, S., and Shirley, P. Ray tracing deformable scenes using dynamic bounding volume hierarchies. ACM Transactions on Graphics 26, 1 (Jan. 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. I. Bork: Report on the 3rd round robin on room acoustical computer simulation -- Part II: Calculations. Acta Acustica united with Acustica 91 (2005) 753--763.Google ScholarGoogle Scholar
  28. D. Ouis: Scattering by a barrier in a room. Applied Acoustics 56 (1999) 1--24.Google ScholarGoogle ScholarCross RefCross Ref
  29. R. R. Torres, U. P. Svensson, M. Kleiner: Computation of edge diffraction for more accurate room acoustics auralization. J. Acoust. Soc. Am. 109 (2001) 600--610.Google ScholarGoogle ScholarCross RefCross Ref
  30. V. Pulkki, T. Lokki, L. Savioja: Implementation and visualization of edge diffraction with image-source method. Proc. 112nd Audio Engineering Society (AES) Convention, Munich, 2002. preprint no. 5603.Google ScholarGoogle Scholar
  31. L. Savioja, J. Huopaniemi, T. Lokki, R. Väänänen: Creating interactive virtual acoustic environments. J. Audio Eng. Soc 47 (1999) 675--705.Google ScholarGoogle Scholar
  32. T. Lokki, J. Hiipakka, L. Savioja: A framework for evaluating virtual acoustic environments. Proc. 110th Audio Engineering Society (AES) Convention, Amsterdam, 2001. preprint no. 5317.Google ScholarGoogle Scholar
  33. A. Løvstad, U. P. Svensson: Diffracted sound field from an orchestra pit. Acoustical Science and Technology 26 (2005) 237--239.Google ScholarGoogle ScholarCross RefCross Ref
  34. T. Lokki, U. P. Svensson, L. Savioja: An efficient auralization of edge diffraction. Proc. Audio Engineering Society 21st International Conference on Architectural Acoustics and Sound Reinforcement, 2002, 166--172.Google ScholarGoogle Scholar
  35. N. de Rycker: Theoretical and numerical study of sound diffraction-application to room acoustics auralization. Rapport de Stage D'Option Scientifique Ècole Polytechnique, Paris, France, 2002.Google ScholarGoogle Scholar
  36. R. Torres, N. de Rycker, M. Kleiner: Edge diffraction and surface scattering in concert halls: Physical and perceptual aspects. J. Temporal Design in Architecture and the Environment 4 (2004) 52--58.Google ScholarGoogle Scholar
  37. N. Tsingos, J.-D. Gascuel: Fast rendering of sound occlusion and diffraction effects for virtual acoustic environments. Proc. Audio Engineering Society 104th Convention, 1998. preprint no. 4699.Google ScholarGoogle Scholar
  38. P. Calamia, U. P. Svensson: Edge subdivision for fast diffraction calculations. Proc. 2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2005, 187--190.Google ScholarGoogle ScholarCross RefCross Ref
  39. P. Calamia, U. P. Svensson: Fast time-domain edge-diffraction calculations for interactive acoustic simulations. EURASIP Journal on Advances in Signal Processing, Special Issue on Spatial Sound and Virtual Acoustics 2007 (2007). Article ID 63560. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. N. Tsingos, C. Dachsbacher, S. Lefebvre, M. Dellepiane: Instant sound scattering. Proc. of the 18th Eurographics Symposium on Rendering (EGSR), July 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. N. Tsingos, T. Funkhouser, A. Ngan, I. Carlbom: Modeling acoustics in virtual environments using the Uniform Theory of Diffraction. Proc. SIGGRAPH 2001, 2001, 545--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. A. Chandak, C. Lauterbach, M. Taylor, Z. Ren, D. Manocha: AD-frustum: Adaptive frustum tracing for interactive sound propagation. IEEE Trans. on Visualization and Computer Graphics 14 (2008) 1707--1722. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. F. Antonacci, M. Foco, A. Sarti, S. Tubaro: Fast modeling of acoustic reflections and diffraction in complex environments using visibility diagrams. Proc. 12th European Signal Processing Conference (EUSIPCO '04), 2004, 1773--1776.Google ScholarGoogle Scholar
  44. L. Aveneau, E. Andres, M. Mériaux: The discrete tube: A spatial acceleration technique for efficient diffraction computation. Proc. 8th International Conference on Discrete Geometry for Computer Imagery (DGCI '99), 1999, 413--4246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. U. P. Svensson, R. I. Fred, J. Vanderkooy: An analytic secondary source model of edge diffraction impulse responses. J. Acoust. Soc. Am. 106 (1999) 2331--2344.Google ScholarGoogle ScholarCross RefCross Ref
  46. M. A. Biot, I. Tolstoy: Formulation of wave propagation in infinite media by normal coordinates with an application to diffraction. J. Acoust. Soc. Am. 29 (1957) 381--391.Google ScholarGoogle ScholarCross RefCross Ref
  47. H. Medwin: Shadowing by finite noise barriers. J. Acoust. Soc. Am. 69 (1981) 1060--1064.Google ScholarGoogle ScholarCross RefCross Ref
  48. U. P. Svensson, P. Calamia: Edge-diffraction impulse responses near specular-zone and shadow-zone boundaries. Acta Acustica united with Acustica 92 (2006) 501--512.Google ScholarGoogle Scholar
  49. R. G. Kouyoumjian, P. H. Pathak: A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proc. IEEE, 1974, 1448--1461.Google ScholarGoogle Scholar
  50. U. P. Svensson: Edge Diffration Toolbox for Matlab. 2006. http://www.iet.ntnu.no/~svensson/Matlab.html.Google ScholarGoogle Scholar
  51. F. P. Mechel: Improved mirror source method in room acoustics. J. Sound. Vib. 256 (2002) 873--940.Google ScholarGoogle ScholarCross RefCross Ref
  52. L. Beranek: Concert and Opera Halls: How They Sound. Acoustical Society of America, Woodbury, NY, USA, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  53. M. Barron: Auditorium Acoustics and Architectural Design. E and FN Spon, London, 1998.Google ScholarGoogle Scholar
  54. C. S. Clay, W. A. Kinney: Numerical computations of time-domain diffractions from wedges and reflections from facets. J. Acoust. Soc. Am. 83 (1988) 2126--2133.Google ScholarGoogle ScholarCross RefCross Ref
  55. T. Lokki, V. Pulkki, P. Calamia: Measurement and modeling of diffraction from an edge of a thin panel. Applied Acoustics 69 (2007) 824--832.Google ScholarGoogle ScholarCross RefCross Ref
  56. Denon Records: Anechoic orchestral music recording. 1995. Audio CD.Google ScholarGoogle Scholar
  57. T. Funkhouser, N. Tsingos, I. Carlbom, G. Elko, J. West, G. Pingali, P. Min, A. Ngan: A beam tracing method for interactive architectural acoustics. J. Acoust. Soc. Am. 115 (2004) 739--756.Google ScholarGoogle ScholarCross RefCross Ref
  58. J. Borish: Extension of the image model to arbitrary polyhedra. J. Acoust. Soc. Am. 75 (1984) 1827--1836.Google ScholarGoogle ScholarCross RefCross Ref
  59. P. Calamia, U. P. Svensson: Culling insignificant diffraction components for interactive acoustic simulations. Proc. 19th Intl. Congress on Acoustics (ICA), Madrid, 2007.Google ScholarGoogle Scholar
  60. U. P. Svensson, P. Calamia: Edge diffraction in computer modeling of room acoustics (A). J. Acoust. Soc. Am. 120 (2006) 2998.Google ScholarGoogle ScholarCross RefCross Ref
  61. P. Min, T. Funkhouser: Priority-driven acoustic modeling for virtual environments. Computer Graphics Forum 19 (2000) 179--188.Google ScholarGoogle ScholarCross RefCross Ref
  62. R. Yagel, J. Meeker: Priority-driven ray tracing. Journal of Visualization and Computer Animation 8 (1997) 17--32.Google ScholarGoogle ScholarCross RefCross Ref
  63. J. Vanderkooy, "A simple theory of cabinet edge diffraction," Journal of the Audio Engineering Society, vol. 39, no. 12, pp. 923--933, 1991.Google ScholarGoogle Scholar
  64. P. Menounou and J. H. You, "Experimental study of the diffracted sound field around jagged edge noise barriers," The Journal of the Acoustical Society of America, vol. 116, no. 5, pp. 2843--2854, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  65. R. R. Torres, U. P. Svensson, and M. Kleiner, "Computation of edge diffraction for more accurate room acoustics auralization," The Journal of the Acoustical Society of America, vol. 109, no. 2, pp. 600--610, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  66. T. Funkhouser, N. Tsingos, I. Carlbom, et al., "A beam tracing method for interactive architectural acoustics," The Journal of the Acoustical Society of America, vol. 115, no. 2, pp. 739--756, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  67. F. Antonacci, M. Foco, A. Sarti, and S. Tubaro, "Fast modeling of acoustic reflections and diffraction in complex environments using visibility diagrams," in Proceedings of 12th European Signal Processing Conference (EUSIPCO '04), pp. 1773--1776, Vienna, Austria, September 2004.Google ScholarGoogle Scholar
  68. R. G. Kouyoumjian and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proceedings of the IEEE, vol. 62, pp. 1448--1461, 1974.Google ScholarGoogle ScholarCross RefCross Ref
  69. M. A. Biot and I. Tolstoy, "Formulation of wave propagation in infinite media by normal coordinates with an application to diffraction," The Journal of the Acoustical Society of America, vol. 29, no. 3, pp. 381--391, 1957.Google ScholarGoogle ScholarCross RefCross Ref
  70. H. Medwin, "Shadowing by finite noise barriers," The Journal of the Acoustical Society of America, vol. 69, no. 4, pp. 1060--1064, 1981.Google ScholarGoogle ScholarCross RefCross Ref
  71. U. P. Svensson, R. I. Fred, and J. Vanderkooy, "An analytic secondary source model of edge diffraction impulse responses," The Journal of the Acoustical Society of America, vol. 106, no. 5, pp. 2331--2344, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  72. P. T. Calamia and U. P. Svensson, "Edge subdivision for fast diffraction calculations," in Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 187--190, New Paltz, NY, USA, October 2005.Google ScholarGoogle Scholar
  73. J. B. Allen and D. A. Berkley, "Image method for efficiently simulating small-room acoustics," The Journal of the Acoustical Society of America, vol. 65, no. 4, pp. 943--950, 1979.Google ScholarGoogle ScholarCross RefCross Ref
  74. J. Borish, "Extension of the image model to arbitrary polyhedra," The Journal of the Acoustical Society of America, vol. 75, no. 6, pp. 1827--1836, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  75. A. Krokstad, S. Strøm, and S. Sørsdal, "Calculating the acoustical room response by the use of a ray tracing technique," Journal of Sound and Vibration, vol. 8, no. 1, pp. 118--125, 1968.Google ScholarGoogle ScholarCross RefCross Ref
  76. T. Funkhouser, I. Carlbom, G. Elko, G. Pingali, M. Sondhi, and J. West, "A beam tracing approach to acoustic modeling for interactive virtual environments," in Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '98), pp. 21--32, Orlando, Fla, USA, July 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. J. B. Keller, "Geometrical theory of diffraction," Journal of the Optical Society of America, vol. 52, no. 2, pp. 116--130, 1962.Google ScholarGoogle ScholarCross RefCross Ref
  78. N. Tsingos, T. Funkhouser, A. Ngan, and I. Carlbom, "Modeling acoustics in virtual environments using the uniform theory of diffraction," in Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01), pp. 545--552, Los Angeles, Calif, USA, August 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. F. Antonacci, M. Foco, A. Sarti, and S. Tubaro, "Accurate and fast audio-realistic rendering of sounds in virtual environments," in Proceedings of 6th IEEE Workshop on Multimedia Signal Processing, pp. 271--274, Siena, Italy, September-October 2004.Google ScholarGoogle Scholar
  80. F. Antonacci, M. Foco, A. Sarti, and S. Tubaro, "Real time modeling of acoustic propagation in complex environments," in Proceedings of 7th International Conference on Digital Audio Effects (DAFx '04), pp. 274--279, Naples, Italy, October 2004.Google ScholarGoogle Scholar
  81. H. Medwin, E. Childs, and G. M. Jebsen, "Impulse studies of double diffraction: a discrete Huygens interpretation," The Journal of the Acoustical Society of America, vol. 72, no. 3, pp. 1005--1013, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  82. V. Pulkki, T. Lokki, and L. Savioja, "Implementation and visualization of edge diffraction with image-source method," in Proceedings of 112th Audio Engineering Society Convention, Munich, Germany, May 2002.Google ScholarGoogle Scholar
  83. P. T. Calamia, U. P. Svensson, and T. Funkhouser, "Integration of edge-diffraction calculations and geometrical-acoustics modeling," in Proceedings of Forum Acusticum, pp. 2499--2504, Budapest, Hungary, August 2005.Google ScholarGoogle Scholar
  84. T. Lokki, U. P. Svensson, and L. Savioja, "An efficient auralization of edge diffraction," in Proceedings of the Audio Engineering Society 21st International Conference on Architectural Acoustics and Sound Reinforcement, pp. 166--172, St. Petersburg, Russia, June 2002.Google ScholarGoogle Scholar
  85. L. Savioja, J. Huopaniemi, T. Lokki, and R. Väänänen, "Creating interactive virtual acoustic environments," Journal of the Audio Engineering Society, vol. 47, no. 9, pp. 675--705, 1999.Google ScholarGoogle Scholar
  86. L. Savioja, J. Huopaniemi, and T. Lokki, "Auralization applying the parametric room acoustic modeling technique-the DIVA auralization system," in Proceedings of the 8th International Conference on Auditory Display, Kyoto, Japan, July 2002.Google ScholarGoogle Scholar
  87. N. de Rycker, "Theoretical and numerical study of sound diffraction-application to room acoustics auralization," Rapport de Stage D'Option Scientifique, Ècole Polytechnique, Paris, France, 2002.Google ScholarGoogle Scholar
  88. R. Torres, N. de Rycker, and M. Kleiner, "Edge diffraction and surface scattering in concert halls: physical and perceptual aspects," Journal of Temporal Design in Architecture and the Environment, vol. 4, pp. 52--58, 2004.Google ScholarGoogle Scholar
  89. B.-I. Dalenbäck, CATT-Acoustic v8 Manual, http://www.catt.se/.Google ScholarGoogle Scholar
  90. C. L. Christensen, ODEON Room Acoustics Program ver. 8 Manual, http://www.odeon.dk.Google ScholarGoogle Scholar
  91. N. Tsingos and J.-D. Gascuel, "Soundtracks for computer animation: sound rendering in dynamic environments with occlusions," in Proceedings of the Conference on Graphics Interface, pp. 9--16, Kelowna, British Columbia, Canada, May 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. N. Tsingos and J.-D. Gascuel, "Fast rendering of sound occlusion and diffraction effects for virtual acoustic environments," in Proceedings of the Audio Engineering Society 104th Convention, Amsterdam, The Netherlands, May 1998, preprint no. 4699.Google ScholarGoogle Scholar
  93. U. P. Svensson and P. T. Calamia, "Edge-diffraction impulse responses near specular-zone and shadow-zone boundaries," Acta Acustica united with Acustica, vol. 92, no. 4, pp. 501--512, 2006.Google ScholarGoogle Scholar
  94. C. S. Clay and W. A. Kinney, "Numerical computations of time-domain diffractions from wedges and reflections from facets," The Journal of the Acoustical Society of America, vol. 83, no. 6, pp. 2126--2133, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  95. P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York, NY, USA, 2nd edition, 1984.Google ScholarGoogle Scholar
  96. R. Torres, Studies of edge diffraction and scattering: applications to room acoustics and auralization, Ph.D. thesis, Chalmers University of Technology, Göteborg, Sweden, 2000.Google ScholarGoogle Scholar
  97. T. Lokki and V. Pulkki, "Measurement and theoretical validation of diffraction from a single edge," in Proceedings of the 18th International Congress on Acoustics (ICA '04), vol. 2, pp. 929--932, Kyoto, Japan, April 2004.Google ScholarGoogle Scholar
  98. A. Løvstad and U. P. Svensson, "Diffracted sound field from an orchestra pit," Acoustical Science and Technology, vol. 26, no. 2, pp. 237--239, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  99. A. M. J. Davis and R. W. Scharstein, "The complete extension of the Biot-Tolstoy solution to the density contrast wedge with sample calculations," The Journal of the Acoustical Society of America, vol. 101, no. 4, pp. 1821--1835, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  100. J. C. Novarini and R. S. Keiffer, "Impulse response of a density contrast wedge: practical implementation and some aspects of its diffracted component," Applied Acoustics, vol. 58, no. 2, pp. 195--210, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  101. U. P. Svensson and P. T. Calamia, "The use of edge diffraction in computational room acoustics," The Journal of the Acoustical Society of America, vol. 120, p. 2998, 2006, (A).Google ScholarGoogle ScholarCross RefCross Ref
  102. Alais, D., and Carlile, S. 2005. Synchronizing to real events: subjective audiovisual alignment scales with perceived auditory depth and speed of sound. Proc Natl Acad Sci 102, 6, 2244--7.Google ScholarGoogle Scholar
  103. Begault, D. 1999. Auditory and non-auditory factors that potentially influence virtual acoustic imagery. In Proc. AES 16th Int. Conf. on Spatial Sound Reproduction, 13--26.Google ScholarGoogle Scholar
  104. Fujisaki, W., Shimojo, S., Kashino, M., and Nishida, S. 2004. Recalibration of audiovisual simultaneity. Nature Neuro-science 7, 7, 773--8.Google ScholarGoogle Scholar
  105. Guski, R., and Troje, N. 2003. Audiovisual phenomenal causality. Perception and Psychophysics 65, 5, 789--800.Google ScholarGoogle Scholar
  106. Hormander, L. 1983. The Analysis of Linear Partial Differential Operators I. Springer-Verlag.Google ScholarGoogle Scholar
  107. Howell, D. C. 1992. Statistical Methods for Psychology. PWS-Kent.Google ScholarGoogle Scholar
  108. ITU. 2001--2003. Method for the subjective assessment of intermediate quality level of coding systems, rec. ITU-R BS.1534--1, http://www.itu.int/.Google ScholarGoogle Scholar
  109. James, D. L., Barbic, J., and Pai, D. K. 2006. Precomputed acoustic transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Transactions on Graphics (ACM SIGGRAPH) 25, 3 (July), 987--995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Larsson, P., Västfjäll, D., and Kleiner, M. 2002. Better presence and performance in virtual environments by improved binaural sound rendering. Proc. AES 22nd Intl. Conf. on virtual, synthetic and entertainment audio (June), 31--38.Google ScholarGoogle Scholar
  111. Moeck, T., Bonneel, N., Tsingos, N., Drettakis, G., Viaud-Delmon, I., and Aloza, D. 2007. Progressive perceptual audio rendering of complex scenes. In ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games (I3D), 189--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. O'Brien, J. F., Shen, C., and Gatchalian, C. M. 2002. Synthesizing sounds from rigid-body simulations. In ACM SIGGRAPH Symp. on Computer Animation, 175--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. Oppenheim, A. V., Schafer, R. W., and Buck, J. R. 1999. Discrete-Time Signal Processing (2nd edition). Prentice-Hall. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. Pai, D. K., van den Doel, K., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., and Yau, S. H. 2001. Scanning physical interaction behavior of 3d objects. In Proc. ACM SIGGRAPH 2001, 87--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. Numerical recipes in C: The art of scientific computing. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Raghuvanshi, N., and Lin, M. C. 2006. Interactive sound synthesis for large scale environments. In ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games (I3D), 101--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. Rodet, X., and Depalle, P. 1992. Spectral envelopes and inverse FFT synthesis. In Proc. 93rd Conv. AES, San Francisco.Google ScholarGoogle Scholar
  118. Sekuler, R., Sekuler, A. B., and Lau, R. 1997. Sound alters visual motion perception. Nature 385, 6614, 308.Google ScholarGoogle Scholar
  119. Sugita, Y., and Suzuki, Y. 2003. Audiovisual perception: Implicit estimation of sound-arrival time. Nature 421, 6926, 911.Google ScholarGoogle Scholar
  120. Tsingos, N., Gallo, E., and Drettakis, G. 2004. Perceptual audio rendering of complex virtual environments. ACM Transactions on Graphics (ACM SIGGRAPH) 23, 3 (July), 249--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. Tsingos, N. 2005. Scalable perceptual mixing and filtering of audio signals using an augmented spectral representation. In Proc. Int. Conf. on Digital Audio Effects, 277--282.Google ScholarGoogle Scholar
  122. van den Doel, K., and Pai, D. K. 1998. The sounds of physical shapes. Presence 7, 4, 382--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. van den Doel, K., and Pai, D. K. 2003. Modal synthesis for vibrating objects. Audio Anecdotes.Google ScholarGoogle Scholar
  124. van den Doel, K., Kry, P. G., and Pai, D. K. 2001. FoleyAutomatic: physically-based sound effects for interactive simulation and animation. In Proc. ACM SIGGRAPH 2001, 537--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. van den Doel, K., Pai, D. K., Adam, T., Kortchmar, L., and Pichora-Fuller, K. 2002. Measurements of perceptual quality of contact sound models. Intl. Conf. on Auditory Display, (ICAD), 345--349.Google ScholarGoogle Scholar
  126. van den Doel, K., Knott, D., and Pai, D. K. 2004. Interactive simulation of complex audiovisual scenes. Presence: Teleoperators and Virtual Environments 13, 1, 99--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. Zölzer, U. 2002. Digital Audio Effects (DAFX) chapter 8. Wiley.Google ScholarGoogle Scholar
  128. Alais, D., and Burr, D. 2004. The ventriloquism effect results from near-optimal bimodal integration. Current Biology 14, 257--262.Google ScholarGoogle ScholarCross RefCross Ref
  129. and, C. G. 1993. Methods for quality assessment of low bit-rate audio codecs, proceedings of the 12th aes conference. 97--107.Google ScholarGoogle Scholar
  130. Berkhout, A., de Vries, D., and Vogel, P. 1993. Acoustic control by wave field synthesis. J. of the Acoustical Society of America 93, 5 (may), 2764--2778.Google ScholarGoogle ScholarCross RefCross Ref
  131. Blauert, J. 1997. Spatial Hearing: The Psychophysics of Human Sound Localization. M.I.T. Press, Cambridge, MA.Google ScholarGoogle Scholar
  132. Chen, J., Veen, B. V., and Hecox, K. 1995. A spatial feature extraction and regularization model for the head-related transfer function. J. of the Acoustical Society of America 97 (Jan.), 439--452.Google ScholarGoogle Scholar
  133. Darlington, D., Daudet, L., and Sandler, M. 2002. Digital audio effects in the wavelet domain. In Proceedings of COST-G6 Conference on Digital Audio Effects, DAFX2002, Hamburg, Germany.Google ScholarGoogle Scholar
  134. 2003. EBU subjective listening tests on low-bitrate audio codecs. Technical report 3296, European Broadcast Union (EBU), Projet Group B/AIM (june).Google ScholarGoogle Scholar
  135. Fouad, H., Hahn, J., and Ballas, J. 1997. Perceptually based scheduling algorithms for real-time synthesis of complex sonic environments. proceedings of the 1997 International Conference on Auditory Display (ICAD'97),.Google ScholarGoogle Scholar
  136. Gallo, E., Lemaitre, G., and Tsingos, N. 2005. Prioritizing signals for selective real-time audio processing. In Proc. of ICAD 2005.Google ScholarGoogle Scholar
  137. Hairston, W., Wallace, M., amd B. E. Stein, J. V., Norris, J., and Schirillo, J. 2003. Visual localization ability influences cross-modal bias. J. Cogn. Neuroscience 15, 20--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. Herder, J. 1999. Optimization of sound spatialization resource management through clustering. The Journal of Three Dimensional Images, 3D-Forum Society 13, 3 (Sept.), 59--65.Google ScholarGoogle Scholar
  139. Hochbaum, D. S., and Schmoys, D. B. 1985. A best possible heuristic for the ik-center problem. Mathematics of Operations Research 10, 2 (May), 180--184.Google ScholarGoogle Scholar
  140. Howell, D. C. 1992. Statistical methods for psychology. PWS-Kent.Google ScholarGoogle Scholar
  141. International Telecom. Union. 2001--2003. Method for the subjective assessment of intermediate quality level of coding systems. Recommendation ITU-R BS.1534-1.Google ScholarGoogle Scholar
  142. Itti, L., Koch, C., and Niebur, E. 1998. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 11 (Nov.), 1254--1259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. ITU-R. 1994. Methods for subjective assessment of small impairments in audio systems including multichannel sound systems. itu-r bs 1116. Tech. rep.Google ScholarGoogle Scholar
  144. Jot, J.-M., and Walsh, M. 2006. Binaural simulation of complex acoustic scenes for interactive audio. In 121th AES Convention, San Francisco, USA. Preprint 6950.Google ScholarGoogle Scholar
  145. Jot, J.-M., Larcher, V., and Pernaux, J.-M. 1999. A comparative study of 3D audio encoding and rendering techniques. Proceedings of the AES 16th international conference, Spatial sound reproduction, Rovaniemi, Finland (April).Google ScholarGoogle Scholar
  146. Kayser, C., Petkov, C., Lippert, M., and Logothetis, N. 2005. Mechanisms for allocating auditory attention: An auditory saliency map. Current Biology 15 (Nov.), 1943--1947.Google ScholarGoogle Scholar
  147. Kelly, M., and Tew, A. 2002. The continuity illusion in virtual auditory space. proc. of the 112th AES Conv., Munich, Germany (May).Google ScholarGoogle Scholar
  148. Kurniawati, E., Absar, J., George, S., Lau, C. T., and Premkumar, B. 2002. The significance of tonality index and nonlinear psychoacoustics models for masking threshold estimation. In Proceedings of the International Conference on Virtual, Synthetic and Entertainment Audio AES22.Google ScholarGoogle Scholar
  149. Lanciani, C. A., and Schafer, R. W. 1997. Psychoacoustically-based processing of MPEG-I layer 1--2 encoded signals. In Proc. IEEE Signal Processing Society 1997 Workshop on Multimedia Signal Processing, 53--58.Google ScholarGoogle Scholar
  150. Lanciani, C. A., and Schafer, R. W. 1999. Subband-domain filtering of MPEG audio signals. In Proceedings of Intl. Conf. on Acoustics, Speech and Signal Processing, 917--920. Google ScholarGoogle ScholarDigital LibraryDigital Library
  151. Larcher, V., Jot, J., Guyard, G., and Warusfel, O. 2000. Study and comparison of efficient methods for 3d audio spatialization based on linear decomposition of HRTF data. Proc. 108th Audio Engineering Society Convention.Google ScholarGoogle Scholar
  152. Lewald, J., Ehrenstein, W. H., and Guski, R. 2001. Spatio-temporal constraints for auditory-visual integration. Beh. Brain Research 121, 1--2, 69--79.Google ScholarGoogle Scholar
  153. Malham, D., and Myatt, A. 1995. 3D sound spatialization using ambisonic techniques. Computer Music Journal 19, 4, 58--70.Google ScholarGoogle Scholar
  154. Møller, H. 1992. Fundamentals of binaural technology. Applied Acoustics 36, 171--218.Google ScholarGoogle Scholar
  155. Painter, E. M., and Spanias, A. S. 2000. Perceptual coding of digital audio. Proceedings of the IEEE 88, 4 (Apr.).Google ScholarGoogle Scholar
  156. Sarlat, L., Warusfel, O., and Viaud-Delmon, I. 2006. Ventriloquism aftereffects occur in the rear hemisphere. Neuroscience Letters 404, 324--329.Google ScholarGoogle Scholar
  157. Stoll, G., and Kozamernik, F. 2000. EBU subjective listening tests on internet audio codecs. EBU TECHNICAL REVIEW, (June).Google ScholarGoogle Scholar
  158. Touimi, A. B., Emerit, M., and Pernaux, J.-M. 2004. Efficient method for multiple compressed audio streams spatialization. In In Proceeding of ACM 3rd Intl. Conf. on Mobile and Ubiquitous multimedia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  159. Touimi, A. B. 2000. A generic framework for filtering in subband domain. In In Proc. of IEEE 9th Wkshp. on Digital Signal Processing, Hunt, Texas, USA.Google ScholarGoogle Scholar
  160. Tsingos, N., Gallo, E., and Drettakis, G. 2004. Perceptual audio rendering of complex virtual environments. Proc. SIGGRAPH'04 (August). Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. Tsingos, N. 2005. Scalable perceptual mixing and filtering of audio signals using an augmented spectral representation. Proc. of 8th Intl. Conf. on Digital Audio Effects (DAFX'05), Madrid, Spain (Sept.).Google ScholarGoogle Scholar
  162. Wand, M., and Strasser, W. 2004. Multi-resolution sound rendering. In Symp. Point-Based Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  163. Zölzer, U., Ed. 2002. DAFX - Digital Audio Effects. Wiley.Google ScholarGoogle Scholar
  164. Magnus Ekman, Fredrik Warg, and Jim Nilsson, "An in-depth look at computer performance growth," SIGARCH Comput. Archit. News, vol. 33, no. 1, pp. 144--147, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  165. D. Geer, "Taking the graphics processor beyond graphics," Computer, vol. 38, no. 9, pp. 14--16, Sept. 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  166. Avi Bleiweiss, "GPU accelerated pathfinding," in GH '08: Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware, Aire-la-Ville, Switzerland, Switzerland, 2008, pp. 65--74, Eurographics Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  167. "GPGPU - General-Purpose Computation on Graphics Hardware," Available at http://www.gpgpu.org, accessed May 15, 2009.Google ScholarGoogle Scholar
  168. "GPGPU - Tutorial and Courses.," Available at http://gpgpu.org/tag/tutorials-courses, Accessed May 15, 2009.Google ScholarGoogle Scholar
  169. John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron E. Lefohn, and Timothy J. Purcell, "A survey of general-purpose computation on graphics hardware," Computer Graphics Forum, vol. 26, no. 1, pp. 80--113, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  170. M. Pharr, Ed., GPU Gems 2: Programming Techniques, Tips and Tricks for Real-Time Graphics, Part IV: General-Purpose Computation on GPUS: A Primer, Addison-Wesley Professional, 2005, Available at http://http.developer.nvidia.com/GPUGems2/gpugems2_part04.html.Google ScholarGoogle Scholar
  171. P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor Fundamentals, IEEE Press, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  172. J. Eyre and J. Bier, "The evolution of DSP processors," IEEE Signal Processing Magazine, 2000, See also http://www.bdti.com/.Google ScholarGoogle Scholar
  173. Durand R. Begault, 3D Sound for Virtual Reality and Multimedia, Academic Press Professional, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  174. L. Savioja, J. Huopaniemi, T. Lokki, and R. Väänänen, "Creating interactive virtual acoustic environments," J. Audio Eng. Soc., vol. 47, no. 9, pp. 675--705, Sept. 1999.Google ScholarGoogle Scholar
  175. D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 2.1 (6th Edition), Addison-Wesley, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  176. David Luebke and Greg Humphreys, "How GPUs Work," Computer, vol. 40, no. 2, pp. 96--100, Feb. 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  177. R. Rost, OpenGL(R) Shading Language (2nd Edition), Addison-Wesley, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  178. William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard, "Cg: a system for programming graphics hardware in a c-like language," in SIGGRAPH '03: ACM SIGGRAPH 2003 Papers, New York, NY, USA, 2003, pp. 896--907, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  179. Randima Fernando and Mark J. Kilgard, The Cg Tutorial: The Definitive Guide to Programmable Real-Time Graphics, Addison-Wesley Professional, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  180. "Nvidia CUDA," Available at http://www.nvidia.com/cuda, accessed May 15, 2009.Google ScholarGoogle Scholar
  181. I. Buck and T. Purcell, GPU Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics. Chapter 37: A Toolkit for Computation on GPUs, Addison-Wesley Professional, 2004, Available at http://http.developer.nvidia.com/GPUGems/gpugems_ch37.html.Google ScholarGoogle Scholar
  182. Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston, and Pat Hanrahan, "Brook for GPUs: stream computing on graphics hardware," ACM Trans. Graph., vol. 23, no. 3, pp. 777--786, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  183. John Owens, GPU Gems 2: Programming Techniques, Tips and Tricks for Real-Time Graphics. Chapter 29: Streaming Architectures and Technology Trends, Addison-Wesley Professional, 2005, Available at http://developer.nvidia.com/object/gpu_gems_2_home.html.Google ScholarGoogle Scholar
  184. Kenneth Moreland and Edward Angel, "The FFT on a GPU," in HWWS '03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, Aire-la-Ville, Switzerland, Switzerland, 2003, pp. 112--119, Eurographics Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  185. Jens Krüger and Rüdiger Westermann, "Linear algebra operators for gpu implementation of numerical algorithms," in SIGGRAPH '03: ACM SIGGRAPH 2003 Papers, New York, NY, USA, 2003, pp. 908--916, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  186. "GPUmat: A GPU toolbox for MATLAB," Available at http://gp-you.org/, accessed May 15, 2009.Google ScholarGoogle Scholar
  187. "GPUFFTW: High Performance Power-of-two FFT library using graphics processors," Available at http://gamma.cs.unc.edu/GPUFFTW/, accessed May 15, 2009.Google ScholarGoogle Scholar
  188. Naga K. Govindaraju and Dinesh Manocha, "Cache-efficient numerical algorithms using graphics hardware," Parallel Comput., vol. 33, no. 10--11, pp. 663--684, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  189. Naga K. Govindaraju, Scott Larsen, Jim Gray, and Dinesh Manocha, "A memory model for scientific algorithms on graphics processors," Nov. 2006, pp. 6--6.Google ScholarGoogle Scholar
  190. S. Whalen, "Audio and the Graphics Processing Unit," Available at http://www.node99.org/papers/gpuaudio.pdf, accessed May 15, 2009.Google ScholarGoogle Scholar
  191. E. Gallo and N. Tsingos, "Efficient 3D audio processing with the GPU," in Proc. ACM Workshop on General Purpose Computing on Graphics Processors (poster), Los Angeles, Aug. 2004, http://www-sop.inria.fr/reves/projects/GPUAudio/.Google ScholarGoogle Scholar
  192. LiquidSonics, "Reverberate LE GPU Edition," Available at http://www.liquidsonics.com/software.htm, accessed May 15, 2009.Google ScholarGoogle Scholar
  193. Nils Schneider, "VST Plugin: Convolution Reverb on NVidia GPUs," Available at http://www.nilsschneider.de, accessed May 15, 2009.Google ScholarGoogle Scholar
  194. Acustica Audio, "Nebula 3 VST Plugin," Available at http://www.acusticaudio.net/, accessed May 15, 2009.Google ScholarGoogle Scholar
  195. "Adobe PixelBender API," Available at http://labs.adobe.com/technologies/pixelbender, accessed May 15, 2009.Google ScholarGoogle Scholar
  196. J. Blauert, Spatial Hearing: The Psychophysics of Human Sound Localization, M.I.T. Press, Cambridge, MA, 1997.Google ScholarGoogle Scholar
  197. A. Smirnov and T. Chiueh, "An Implementation of a FIR Filter on a GPU," Available at http://research.alexeysmirnov.name/index.php?area=gr&proj=fog, accessed May 15, 2009.Google ScholarGoogle Scholar
  198. B. Cowan and B. Kapralos, "Real-time GPU-base convolution: A follow-up," in Proc. of the FuturePlay @ GDC Canada Intl. Conf. on the Future of Game Design and Technology, May 12--13 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  199. Brent Cowan and Bill Kapralos, "Spatial sound for video games and virtual environments utilizing real-time GPU-based convolution," in Future Play '08: Proceedings of the 2008 Conference on Future Play, New York, NY, USA, 2008, pp. 166--172, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  200. F. Trebien and M. M. Oliveira, "Realistic real-time sound resynthesis and processing for interactive virtual worlds," The Visual Computer, vol. 25, no. 5--7, pp. 469--477, May 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  201. F. Trebien and M. M. Oliveira, Real-time Audio Processing on the GPU, pp. 583--604, Charles River Media, 2008.Google ScholarGoogle Scholar
  202. Q. Zhang, L. Ye, and Z. Pan, "Physically-based sound synthesis on GPUs," in Proc. of the 4th Intl. Conf. on Entertainment Computing, Sept. 19--21 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  203. Christoph von Tycowicz and Jörn Loviscach, "A malleable drum," in SIGGRAPH '08: ACM SIGGRAPH 2008 posters, New York, NY, USA, 2008, pp. 1--1, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  204. N. Röber, M. Spindler, and M. Masuch, "Waveguide-based Room Acoustics through Graphics Hardware," in Proc. Intl. Computer Music Conf. (ICMC), Nov. 6-11, 2006.Google ScholarGoogle Scholar
  205. N. Raghuvanshi, B. Lloyd, and M. C. Lin, "Efficient Numerical Acoustic Simulation on Graphics Processors Using Adaptive Rectangular Decomposition," in Proc. EAA Symp. on Auralization, June 15-17, 2009.Google ScholarGoogle Scholar
  206. Nikunj Raghuvanshi, Rahul Narain, and Ming C. Lin, "Efficient and accurate sound propagation using adaptive rectangular decomposition," IEEE Transactions on Visualization and Computer Graphics, vol. 99, no. 2, 5555. Google ScholarGoogle ScholarDigital LibraryDigital Library
  207. Samuel Siltanen, Tapio Lokki, and Lauri Savioja, "Frequency domain acoustic radiance transfer for real-time auralization," Acta Acustica united with Acustica, vol. 95, pp. 106--117(12), January/February 2009.Google ScholarGoogle ScholarCross RefCross Ref
  208. Nathan A. Carr, Jesse D. Hall, and John C. Hart, "GPU algorithms for radiosity and subsurface scattering," in HWWS '03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, Aire-la-Ville, Switzerland, Switzerland, 2003, pp. 51--59, Eurographics Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  209. Carsten Dachsbacher, Marc Stamminger, George Drettakis, and Frédo Durand, "Implicit visibility and antiradiance for interactive global illumination," in SIGGRAPH '07: ACM SIGGRAPH 2007 papers, New York, NY, USA, 2007, p. 61, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  210. Jaakko Lehtinen, Matthias Zwicker, Emmanuel Turquin, Janne Kontkanen, Frédo Durand, François Sillion, and Timo Aila, "A meshless hierarchical representation for light transport," ACM Trans. Graph., vol. 27, no. 3, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  211. Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan, "Ray tracing on programmable graphics hardware," ACM Transactions on Graphics, vol. 21, no. 3, pp. 703--712, July 2002, ISSN 0730-0301 (Proceedings of ACM SIGGRAPH 2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  212. N. Röber, U. Kaminski, and M. Masuch, "Ray-acoustics using Computer Graphics Technology," in Proc. 10th Intl. Conf. on Digital Audio Effects (DAFx), Sep. 10-15, 2007.Google ScholarGoogle Scholar
  213. M. Jedrzejewski and K. Marasek, "Computation of room acoustics using programmable video hardware," in Proc. Computer Vision and Graphics International Conference, ICCVG 2004, Warsaw, Poland, September 2004.Google ScholarGoogle Scholar
  214. A. Chandak, C. Lauterbach, M. Taylor, Z. Ren, and D. Manocha, "AD-Frustum: Adaptive Frustum Tracing for Interactive Sound Propagation," Visualization and Computer Graphics, IEEE Transactions on, vol. 14, no. 6, pp. 1707--1722, Nov.-Dec. 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  215. Nicolas Tsingos and Jean-Dominique Gascuel, "Soundtracks for computer animation: sound rendering in dynamic environments with occlusions," in Proc. of Graphics Interface'97, May 1997, pp. 9--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  216. B. Cowan and B. Kapralos, "Real-time acoustical diffraction modeling using the GPU," in Proc. of the 10th Western Pacific Acoustics Conf., Sept. 21-23 2009.Google ScholarGoogle Scholar
  217. Nicolas Tsingos and Jean-Dominique Gascuel, "Fast rendering of sound occlusion and diffraction effects for virtual acoustic environments," in Proc. 104th Audio Engineering Society Convention, preprint 4699, Amsterdam, Netherlands, May 1998.Google ScholarGoogle Scholar
  218. Nicolas Tsingos, Carsten Dachsbacher, Sylvain Lefebvre, and Matteo Dellepiane, "Instant sound scattering," in Rendering Techniques (Proc. of the Eurographics Symposium on Rendering), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  219. C. Dachsbacher and M. Stamminger, "Reflective shadow map," Proceedings of I3D'05, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  220. S. Siltanen, "Geometry reduction in room acoustics modeling," Master Thesis, Helsinki University Of Technology, Department of Computer Science Telecommunications Software and Multimedia Laboratory, September 2005.Google ScholarGoogle Scholar
  221. L. M. Wang, J. Rathsam, and S. R. Ryherd, "Interactions of model detail level and scattering coefficients in room acoustic computer simulation," Intl. Symp. on Room Acoustics, a satelite symposium of ICA, Kyoto, Japan, 2004.Google ScholarGoogle Scholar
  222. C. Joslin and N. Magnenat-Thalmann, "Significant facet retreival for real-time 3D sound rendering in complex virtual environments," Proc. of VRTST 2003, October 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  223. Robert L. Cook, Loren Carpenter, and Edwin Catmull, "The reyes image rendering architecture," SIGGRAPH Comput. Graph., vol. 21, no. 4, pp. 95--102, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  224. Jonathan Cohen, Marc Olano, and Dinesh Manocha, "Appearance-preserving simplification," in SIGGRAPH '98: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, New York, NY, USA, 1998, pp. 115--122, ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  225. Nicolas Tsingos, Carsten Dachsbacher, Sylvain Lefebvre, and Matteo Dellepiane, "Extending geometrical acoustics to highly detailed architectural environments," in 19th Intl. Congress on Acoustics, sep 2007.Google ScholarGoogle Scholar
  226. J. Hirche, A. Ehlert, S. Guthe, and M. Doggett, "Hardware accelerated per-pixel displacement mapping," Proc. of Graphics Interface'04. Canadian Human-Computer Communications Society, pp. 153--158, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  227. Lionel Baboud and Xavier Décoret, "Rendering geometry with relief textures," in Graphics Interface '06, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  228. U. P. Svensson, R. I. Fred, and J. Vanderkooy, "An analytic secondary source model of edge diffraction impulse responses," J. Acoust. Soc. Am., vol. 106, pp. 2331--2344, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  229. U. P. Svensson, P. Calamia, and S. Nakanishi, "Frequency-domain edge diffraction for finite and infinite edges," Acta Acustica united with Acustica, vol. 95, no. 3, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  230. E. Wenzel, M. Arruda, D. Kistler, and F. Wightman, "Localization using non-individualized head-related transfer functions," J. Acoustical Soc. Am., vol. 94, no. 1, pp. 111--123, July 1993.Google ScholarGoogle ScholarCross RefCross Ref
  231. D. Begault, E. Wenzel, and M. Anderson, "Direct comparison of the impact of head-tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source," J. Audio Eng. Soc., vol. 49, no. 10, pp. 904--916, 2001.Google ScholarGoogle Scholar
  232. J. C. Middlebrooks, E. A. Macpherson, and Z. A. Onsan, "Psychophysical customization of directional transfer functions for virtual sound localization," Journal Acoustical Soc. Am., vol. 108, no. 6, pp. 3088--3091, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  233. Y. Kahana and P. A. Nelson, "Numerical modelling of the spatial acoustic response of the human pinna," Journal of Sound and Vibration, vol. 292, no. 1-2, pp. 148--178, Apr. 2006.Google ScholarGoogle ScholarCross RefCross Ref
  234. B. Katz, "Boundary element method calculation of individual head-related transfer function. part I: Rigid model calculation," Journal Acoustical Soc. Am., vol. 110, no. 5, pp. 2440--2448, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  235. Matteo Dellepiane, Nico Pietroni, Nicolas Tsingos, Manuel Asselot, and Roberto Scopigno, "Reconstructing head models from photographs for individualized 3D-audio processing," in Computer Graphics Forum (Special Issue - Proc. Pacific Graphics) 27(7), 2008.Google ScholarGoogle Scholar
  236. Jörn Loviscach, "GPU-based audio via the VGA port," in SIGGRAPH '08: ACM SIGGRAPH 2008 posters, New York, NY, USA, 2008, pp. 1--1, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  237. Brian Santo and Sally Adee, "Multi-core made simpler," IEEE Spectrum, Jan. 2009, Available at http://www.spectrum.ieee.org/jan09/7129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  238. Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan, "Larrabee: a many-core x86 architecture for visual computing," ACM Trans. Graph., vol. 27, no. 3, pp. 1--15, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  239. M. Pharr, A. Lefohn, C. Kolb, P. Lalonde, T. Foley, and G. Berry, "Programmable Graphics - The Future of Interactive Rendering," Available at http://www.cerlsoundgroup.org/RealTimeMorph/, accessed March 08, 2006.Google ScholarGoogle Scholar
  240. A. J. Berkhout, D. de Vries, and P. Vogel, "Acoustic control by wave field synthesis," vol. 93, no. 5, pp. 2764--2778, may 1993.Google ScholarGoogle Scholar
  241. Adam O'Donovan, Ramani Duraiswami, and Nail A. Gumerov, "Real time capture of audio images and their use with video," Oct. 2007, pp. 10--13.Google ScholarGoogle Scholar
  242. M. Monks, B. M. Oh, and J. Dorsey, "Audioptimization: Goal based acoustic design," IEEE Computer Graphics&Applications, pp. 76--91, May 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  243. Patrick Cardinal, Pierre Dumouchel, Gilles Boulianne, and Michel Comeau, "GPU Accelerated Acoustic Likelihood Computations," in Proc. of INTERSPEECH, 2008.Google ScholarGoogle Scholar
  244. Paul R. Dixon and Tasuku Oonishia and Sadaoki Furuia, "Harnessing graphics processors for the fast computation of acoustic likelihoods in speech recognition," Computer Speech&Language, vol. 23, no. 4, pp. 510--526, Oct. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  245. Jike Chong, Youngmin Yi, Arlo Faria, Nadathur Rajagopalan Satish, and Kurt Keutzer, "Data-parallel large vocabulary continuous speech recognition on graphics processors," Tech. Rep. UCB/EECS-2008-69, EECS Department, University of California, Berkeley, May 2008.Google ScholarGoogle Scholar
  246. ISO/IEC JTC1/SC29/WG11 IS 14496, "Information Technology-Coding of Multimedia Objects (MPEG-4)," (1999).Google ScholarGoogle Scholar
  247. ISO/IEC JTC/SC24 IS 14772-1, "Information Technology---Computer Graphics and Image Processing---The Virtual Reality Modeling Language (VRML97)" (1997 Apr.). URL: http://www.vrml.org/Specifications/VRML97/.Google ScholarGoogle Scholar
  248. SUN, Inc., "JAVA 3D API Specification 1.1" (1998 Dec.). URL: http://java.sun.com/products/java-media/3D/forDevelopers/j3dguide/j3dTOC.doc.html.Google ScholarGoogle Scholar
  249. W. F. Dale, "A Machine-Independent 3D Positional Sound Application Programmer Interface to Spatial Audio Engines," in Proc. AES 16th Int. Conf. on Spatial Sound Reproduction (Rovaniemi, Finland, 1999 Apr.), pp. 160--171.Google ScholarGoogle Scholar
  250. Interactive Audio Special Interest Group. URL: http://www.iasig.org.Google ScholarGoogle Scholar
  251. E. Wenzel, "Spatial Sound and Sonification," presented at the International Conference on Auditory Display (ICAD'92). Also in Auditory Display: Sonification, Audification, and Auditory Interface, SFI Studies in the Sciences of Complexity, Proc. XVIII, G. Kramer, Ed. (Addison-Wesley, Reading, MA, 1994).Google ScholarGoogle Scholar
  252. D. Begault, 3-D Sound for Virtual Reality and Multimedia (Academic Press, Cambridge, MA, 1994). Google ScholarGoogle ScholarDigital LibraryDigital Library
  253. S. Foster, E. Wenzel, and R. Taylor, "Real-Time Synthesis of Complex Acoustic Environments," in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA'91) (New Paltz, NY, 1991).Google ScholarGoogle Scholar
  254. B. Shinn-Cunningham, H. Lehnert, G. Kramer, E. Wenzel, and N. Durlach, "Auditory Displays," in Binaural and Spatial Hearing in Real and Virtual Environments, R. Gilkey and T. Anderson, Eds. (Lawrence Erlbaum, Mahwah, NJ, 1997), pp. 611--663.Google ScholarGoogle Scholar
  255. J.-M. Jot, "Real-Time Spatial Processing of Sounds for Music, Multimedia and Interactive Human-Computer Interfaces," Multimedia Sys. (Special Issue on Audio and Multimedia), vol. 7, no. 1, pp. 55--69 (1999). Google ScholarGoogle ScholarDigital LibraryDigital Library
  256. H. Lehnert and J. Blauert, "Principles of Binaural Room Simulation," Appl. Acoust., vol. 36, pp. 259--291 (1992).Google ScholarGoogle ScholarCross RefCross Ref
  257. J. P. Vian and J. Martin, "Binaural Room Acoustics Simulation: Practical Uses and Applications," Appl. Acoust., vol. 36, pp. 293--305 (1992).Google ScholarGoogle ScholarCross RefCross Ref
  258. J. Martin, D. Van Maercke, and J. P. Vian, "Binaural Simulation of Concert Halls: A New Approach for the Binaural Reverberation Process," J. Acoust. Soc. Am., vol. 94, pp. 3255--3264 (1993).Google ScholarGoogle ScholarCross RefCross Ref
  259. J. Huopaniemi, "Virtual Acoustics and 3-D Sound in Multimedia Signal Processing," Ph.D. thesis, Helsinki University of Technology, Laboratory of Acoustics and Audio Signal Processing (1999).Google ScholarGoogle Scholar
  260. M. Kleiner, B.-I. Dalenbäck, and P. Svensson, "Auralization---An Overview," J. Audio Eng. Soc., vol. 41, pp. 861--875 (1993 Nov.).Google ScholarGoogle Scholar
  261. A. Krokstad, S. Strøm, and S. Sørsdal, "Calculating the Acoustical Room Response by the Use of a Ray Tracing Technique," J. Sound Vib., vol. 8, pp. 118--125 (1968).Google ScholarGoogle ScholarCross RefCross Ref
  262. A. Kulowski, "Algorithmic Representation of the Ray Tracing Technique," Appl. Acoust., vol. 18, pp. 449--469 (1985).Google ScholarGoogle ScholarCross RefCross Ref
  263. J. B. Allen and D. A. Berkley, "Image Method for Efficiently Simulating Small-Room Acoustics," J. Acoust. Soc. Am., vol. 65, pp. 943--950 (1979).Google ScholarGoogle ScholarCross RefCross Ref
  264. J. Borish, "Extension of the Image Model to Arbitrary Polyhedra," J. Acoust. Soc. Am., vol. 75, pp. 1827--1836 (1984).Google ScholarGoogle ScholarCross RefCross Ref
  265. H. Kuttruff, "Sound Field Prediction in Rooms," in Proc. 15th Int. Congr. on Acoustics (ICA'95), vol. 2 (Trondheim, Norway, 1995 June), pp. 545--552.Google ScholarGoogle Scholar
  266. D. Botteldooren, "Finite-Difference Time-Domain Simulation of Low-Frequency Room Acoustic Problems," J. Acòust. Soc. Am., vol. 98, pp. 3302--3308 (1995).Google ScholarGoogle ScholarCross RefCross Ref
  267. L. Savioja, J. Backman, A. Järvinen, and T. Takala, "Waveguide Mesh Method for Low-Frequency Simulation of Room Acoustics," in Proc. 15th Int. Congr. on Acoustics (ICA'95), vol. 2 (Trondheim, Norway, 1995 June), pp. 637--640.Google ScholarGoogle Scholar
  268. M. R. Schroeder, "Natural-Sounding Artificial Reverberation," J. Audio Eng. Soc., vol. 10, pp. 219--223 (1962).Google ScholarGoogle Scholar
  269. J. A. Moorer, "About This Reverberation Business," Comput. Music J., vol. 3, pp. 13--28 (1979).Google ScholarGoogle ScholarCross RefCross Ref
  270. W. Gardner, "Reverberation Algorithms," in Applications of Digital Signal Processing to Audio and Acoustics, M. Kahrs and K. Brandenburg, Eds. (Kluwer Academic, Boston, MA, 1997), pp. 85--131.Google ScholarGoogle Scholar
  271. J. Blauert, Spatial Hearing. The Psychophysics of Human Sound Localization, 2nd ed. (MIT Press, Cambridge, MA, 1997).Google ScholarGoogle Scholar
  272. H. Møller, "Fundamentals of Binaural Technology," Appl. Acoust., vol. 36, pp. 171--218 (1992).Google ScholarGoogle ScholarCross RefCross Ref
  273. G. Kendall, "A 3-D Sound Primer: Directional Hearing and Stereo Reproduction," Comput. Music J., vol. 19, no. 4, pp. 23--46 (1995 Winter).Google ScholarGoogle ScholarCross RefCross Ref
  274. F. L. Wightman and D. J. Kistler, "Headphone Simulation of Free-Field Listening. I: Stimulus Synthesis," J. Acoust. Soc. Am., vol. 85, pp. 858--867 (1989).Google ScholarGoogle ScholarCross RefCross Ref
  275. H. Møller, M. F. Sørensen, D. Hammershøi, and C. B. Jensen, "Head-Related Transfer Functions of Human Subjects," J. Audio Eng. Soc., vol. 43, pp. 300--321 (1995 May).Google ScholarGoogle Scholar
  276. G. S. Kendall and W. L. Martens, "Simulating the Cues of Spatial Hearing in Natural Environments," in Proc. 1984 Int. Computer Music Conf. (Paris, France, 1984), pp. 111--125.Google ScholarGoogle Scholar
  277. F. Asano, Y. Suzuki, and T. Sone, "Role of Spectral Cues in Median Plane Localization," J. Acoust. Soc. Am., vol. 88, pp. 159--168 (1990).Google ScholarGoogle ScholarCross RefCross Ref
  278. D. J. Kistler and F. L. Wightman, "A Model of Head-Related Transfer Functions Based on Principal Components Analysis and Minimum-Phase Reconstruction," J. Acoust. Soc. Am., vol. 91, pp. 1637--1647 (1992).Google ScholarGoogle ScholarCross RefCross Ref
  279. M. A. Blommer and G. H. Wakefield, "On the Design of Pole-Zero Approximations Using a Logarithmic Error Measure," IEEE Trans. Signal Process., vol. 42, pp. 3245--3248 (1994 Nov.).Google ScholarGoogle ScholarDigital LibraryDigital Library
  280. J. Sandvad and D. Hammershøi, "Binaural Auralization: Comparison of FIR and IIR Filter Representation of HIRs," presented at the 96th Convention of the Audio Engineering Society, J. Audio Eng. Soc. (Abstracts), vol. 42, p. 395 (1994 May), preprint 3862.Google ScholarGoogle Scholar
  281. J. M. Jot, O. Warusfel, and V. Larcher, "Digital Signal Processing Issues in the Context of Binaural and Transaural Sterephony," presented at the 98th Convention of the Audio Engineering Society, J. Audio Eng. Soc. (Abstracts), vol. 43, p. 396 (1995 May), preprint 3980.Google ScholarGoogle Scholar
  282. J. Huopaniemi, N. Zacharov, and M. Karjalainen, "Objective and Subjective Evaluation of Head-Related Transfer Function Filter Design," J. Audio Eng. Soc., vol. 47, pp. 218--239 (1999 Apr.).Google ScholarGoogle Scholar
  283. M. Schroeder and B. Atal, "Computer Simulation of Sound Transmission in Rooms," in IEEE Conv. Rec., pt. 7 (1963), pp. 150--155.Google ScholarGoogle Scholar
  284. D. H. Cooper and J. L. Bauck, "Prospects for Transaural Recording," J. Audio Eng. Soc., vol. 37, pp. 3--19 (1989 Jan./Feb.).Google ScholarGoogle Scholar
  285. K. B. Rasmussen and P. M. Juhl, "The Effect of Head Shape on Spectral Stereo Theory," J. Audio Eng. Soc., vol. 41, pp. 135--142 (1993 Mar.).Google ScholarGoogle Scholar
  286. W. Gardner, "Transaural 3-D Audio," MIT Media Lab Perceptual Computing, Tech. Rep. 342 (1995).Google ScholarGoogle Scholar
  287. M. J. Walsh and D. J. Furlong, "Improved Spectral Stereo Head Model," presented at the 99th Convention of the Audio Engineering Society, J. Audio Eng. Soc. (Abstracts), vol. 43, p. 1093 (1995 Dec.), preprint 4128.Google ScholarGoogle Scholar
  288. M. A. Gerzon, "Periphony: With-Height Sound Reproduction," J. Audio Eng. Soc., vol. 21, pp. 2--10 (1973 Jan./Feb.).Google ScholarGoogle Scholar
  289. D. Malham and A. Myatt, "3-D Sound Spatialization Using Ambisonic Techniques," Comput. Music J., vol. 19, no. 4, pp. 58--70 (1995).Google ScholarGoogle ScholarCross RefCross Ref
  290. V. Pulkki, "Virtual Sound Source Positioning Using Vector Base Amplitude Panning," J. Audio Eng. Soc., vol. 45, pp. 456--466 (1997 June).Google ScholarGoogle Scholar
  291. T. Takala, R. Hänninen, V. Välimäki, L. Savioja, J. Huopaniemi, T. Huotilainen, and M. Karjalainen, "An Integrated System for Virtual Audio Reality," presented at the 100th Convention of the Audio Engineering Society, J. Audio Eng. Soc. (Abstracts), vol. 44, p. 644 (1996 July/Aug), preprint 4229.Google ScholarGoogle Scholar
  292. DIVA Group: J. Hiipakka, R. Hänninen, T. Ilmonen, H. Napari, T. Lokki, L. Savioja, J. Huopaniemi, M. Karjalainen, T. Tolonen, V. Välimäki, S. Välimäki, and T. Takala, "Virtual Orchestra Performance," in Visual Proc. of SIGGRAPH'97 (Los Angeles, CA, 1997), p. 81, ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  293. T. Lokki, J. Hiipakka, R. Hänninen, T. Ilmonen, L. Savioja, and T. Takala, "Real-Time Audiovisual Rendering and Contemporary Audiovisual Art," Organised Sound, vol. 3, no. 3 (1999). Google ScholarGoogle ScholarDigital LibraryDigital Library
  294. T. Takala and J. Hahn, "Sound Rendering," Comput. Graphics, SIGGRAPH'92, no. 26, pp. 211--220 (1992). Google ScholarGoogle ScholarDigital LibraryDigital Library
  295. J. Hahn, J. Geigel, J. W. Lee, L. Gritz, T. Takala, and S. Mishra, "An Integrated Approach to Sound and Motion," J. Visualiz. and Comput. Animation, vol. 6, no. 2, pp. 109--123 (1995).Google ScholarGoogle ScholarCross RefCross Ref
  296. T. Ilmonen, "Tracking Conductor of an Orchestra Using Artificial Neural Networks," Master's thesis, Helsinki University of Technology (1999).Google ScholarGoogle Scholar
  297. R. Hänninen, "LibR---An Object-Oriented Software Architecture for Realtime Sound and Kinematics," Licentiate thesis, Helsinki University of Technology (1999).Google ScholarGoogle Scholar
  298. ISO/IEC JTC1/SC29/WG11 IS 14496-3 (MPEG-4), "Information Technology---Coding of Audiovisual Objects. Part 3: Audio" (1999).Google ScholarGoogle Scholar
  299. K. Brandenburg and M. Bosi, "Overview of MPEG Audio: Current and Future Standards for Low-Bit-Rate Audio Coding," J. Audio Eng. Soc., vol. 45, pp. 4--21 (1997 Jan./Feb.).Google ScholarGoogle Scholar
  300. J. O. Smith, "Physical Modeling Synthesis Update," Comput. Music J., vol. 20, pp. 44--56 (1996 Summer).Google ScholarGoogle ScholarCross RefCross Ref
  301. J. Huopaniemi, M. Karjalainen, V. Välimäki, and T. Huotilainen, "Virtual Instruments in Virtual Rooms---A Real-Time Binaural Room Simulation Environment for Physical Models of Musical Instruments," in Proc. Int. Computer Music Conf. (ICMC'94) (Aarhus, Denmark, 1994 Sept.), pp. 455--462.Google ScholarGoogle Scholar
  302. M. Karjalainen, J. Huopaniemi, and V. Välimäki, "Direction-Dependent Physical Modeling of Musical Instruments," in Proc. 15th Int. Congr. on Acoustics (ICA'95) (Trondheim, Norway, 1995 June), pp. 451--454.Google ScholarGoogle Scholar
  303. J. Meyer, Acoustics and the Performance of Music (Verlag das Musikinstrument, Frankfurt/Main, Germany, 1978).Google ScholarGoogle Scholar
  304. N. H. Fletcher and T. D. Rossing, The Physics of Musical Instruments (Springer, New York, 1991).Google ScholarGoogle ScholarCross RefCross Ref
  305. J. Flanagan, "Analog Measurements of Sound Radiation from the Mouth," J. Acoust. Soc. Am., vol. 32, pp. 1613--1620 (1960 Dec.).Google ScholarGoogle ScholarCross RefCross Ref
  306. J. Huopaniemi, K. Kettunen, and J. Rahkonen, "Measurement and Modeling Techniques for Directional Sound Radiation from the Mouth," in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA'99) (New Paltz, NY, 1999 Oct.).Google ScholarGoogle Scholar
  307. D. H. Cooper, "Calculator Program for Head-Related Transfer Function," J. Audio Eng. Soc. (Personal Calculator Programs), vol. 30, pp. 34--38 (1982 Jan./Feb.).Google ScholarGoogle Scholar
  308. W. M. Rabinowitz, J. Maxwell, Y. Shao, and M. Wei, "Sound Localization Cues for a Magnified Head: Implications from Sound Diffraction about a Rigid Sphere," Presence, vol. 2, no. 2, pp. 125--129 (1993).Google ScholarGoogle ScholarDigital LibraryDigital Library
  309. R. Duda and W. Martens, "Range-Dependence of the HRTF of a Spherical Head," J. Acoust. Soc. Am., vol. 104, pp. 3048--3058 (1998 Nov.).Google ScholarGoogle ScholarCross RefCross Ref
  310. M. R. Schroeder, "Digital Simulation of Sound Transmission in Reverberant Spaces," J. Acoust. Soc. Am., vol. 47, no. 2, pt. 1, pp. 424--431 (1970).Google ScholarGoogle ScholarCross RefCross Ref
  311. M. R. Schroeder, "Computer Models for Concert Hall Acoustics," Am. J. Phys., vol. 41, pp. 461--471 (1973).Google ScholarGoogle ScholarCross RefCross Ref
  312. A. Pietrzyk, "Computer Modeling of the Sound Field in Small Rooms," in Proc. AES 15th Int. Conf. on Audio Acoustics and Small Spaces (Copenhagen, Denmark, 1998 Oct. 31--Nov. 2), pp. 24--31.Google ScholarGoogle Scholar
  313. H. Kuttruff, Room Acoustics, 3rd ed. (Elsevier, Essex, UK, 1991).Google ScholarGoogle Scholar
  314. R. Lyon and R. DeJong, Theory and Application of Statistical Energy Analysis, 2nd ed. (Butterworth-Heinemann, Newton, MA, 1995).Google ScholarGoogle Scholar
  315. D. Jaffe and J. O. Smith, "Extensions of the Karplus-Strong Plucked String Algorithm," Comput. Music J., vol. 7, no. 2, pp. 56--69 (1983 Summer). reprinted in The Music Machine, C. Roads, Ed. (MIT Press, Cambridge, MA, 1989), pp. 481--494.Google ScholarGoogle ScholarCross RefCross Ref
  316. J. O. Smith, "Physical Modeling Using Digital Waveguides," Comput. Music J., vol. 16, no. 4, pp. 74--87 (1992 Winter).Google ScholarGoogle ScholarCross RefCross Ref
  317. V. Välimäki and T. Takala, "Virtual Musical Instruments---Natural Sound Using Physical Models," Organised Sound, vol. 1, no. 2, pp. 75--86 (1996). Google ScholarGoogle ScholarDigital LibraryDigital Library
  318. J. O. Smith, "Principles of Digital Waveguide Models of Musical Instruments," in Applications of Digital Signal Processing to Audio and Acoustics, M. Kahrs and K. Brandenburg, Eds. (Kluwer Academic, Boston, MA, 1997), chap. 10, pp. 417--466.Google ScholarGoogle Scholar
  319. S. Van Duyne and J. O. Smith, "Physical Modeling with the 2-D Digital Waveguide Mesh," in Proc. Int. Computer Music Conf. (ICMC'93) (Tokyo, Japan, 1993 Sept.), pp. 40--47.Google ScholarGoogle Scholar
  320. L. Savioja, M. Karjalainen, and T. Takala, "DSP Formulation of a Finite Difference Method for Room Acoustics Simulation," in Proc. IEEE Nordic Signal Processing Symp. (NORSIG'96) (Espoo, Finland, 1996 Sept.), pp. 455--458.Google ScholarGoogle Scholar
  321. S. Van Duyne and J. O. Smith, "The Tetrahedral Digital Waveguide Mesh," in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA'95) (New Paltz, NY, 1995 Oct.).Google ScholarGoogle Scholar
  322. F. Fontana and D. Rocchesso, "Physical Modeling of Membranes for Percussion Instruments," Acustica united with Acta Acustica, vol. 84, pp. 529--542 (1998 May/June).Google ScholarGoogle Scholar
  323. L. Savioja and V. Välimäki, "Improved Discrete-Time Modeling of Multi-Dimensional Wave Propagation Using the Interpolated Digital Waveguide Mesh," in Proc. Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP'97), vol. 1 (Munich, Germany, 1997 Apr. 19--24), pp. 459--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  324. L. Savioja and V. Välimäki, "Reduction of the Dispersion Error in the Triangular Digital Waveguide Mesh Using Frequency Warping," IEEE Signal Process. Lett., vol. 6, no. 3, pp. 58--60 (1999 Mar.).Google ScholarGoogle ScholarCross RefCross Ref
  325. L. Savioja and V. Välimäki, "Reduction of the Dispersion Error in the Interpolated Digital Waveguide Mesh Using Frequency Warping," in Proc. Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP'99), vol. 2 (Phoenix, AZ, 1999 Mar. 15--19), pp. 973--976. Google ScholarGoogle ScholarDigital LibraryDigital Library
  326. A. Kulowski, "Error Investigation for the Ray Tracing Technique," Appl. Acoust., vol. 15, pp. 263--274 (1982).Google ScholarGoogle ScholarCross RefCross Ref
  327. D. van Maercke and J. Martin, "The Prediction of Echograms and Impulse Responses within the Epidaure Software," Appl. Acoust., vol. 38, no. 2--4 (Special Issue on Computer Modelling and Auralisation of Sound Fields in Rooms), pp. 93--114 (1993).Google ScholarGoogle Scholar
  328. G. M. Naylor, "ODEON---Another Hybrid Room Acoustical Model," Appl. Acoust., vol. 38, no. 2--4 (Special Issue on Computer Modelling and Auralisation of Sound Fields in Rooms), pp. 131--143 (1993).Google ScholarGoogle Scholar
  329. B. M. Gibbs and D. K. Jones, "A Simple Image Method for Calculating the Distribution of Sound Pressure Levels within an Enclosure," Acustica, vol. 26, no. 1, pp. 24--32 (1972).Google ScholarGoogle Scholar
  330. H. Lee and B. H. Lee, "An Efficient Algorithm for the Image Model Technique," Appl. Acoust., vol. 24, pp. 87--115 (1988).Google ScholarGoogle ScholarCross RefCross Ref
  331. R. Heinz, "Binaural Room Simulation Based on an Image Source Model with Addition of Statistical Methods to Include the Diffuse Sound Scattering of Walls and to Predict the Reverberant Tail," Appl. Acoust., vol. 38, no. 2--4 (Special Issue on Computer Modelling and Auralisation of Sound Fields in Rooms), pp. 145--159 (1993).Google ScholarGoogle Scholar
  332. D. van Maercke, "Simulation of Sound Fields in Time and Frequency Domain Using a Geometrical Model," in Proc. 12th Int. Congr. on Acoustics (ICA'86), vol. 2 (Toronto, Ont., Canada, 1986 July), paper E11--7.Google ScholarGoogle Scholar
  333. M. Vorländer, "Simulation of the Transient and Steady-State Sound Propagation in Rooms Using a New Combined Ray-Tracing/Image-Source Algorithm," J. Acoust. Soc. Am., vol. 86, pp. 172--178 (1989).Google ScholarGoogle ScholarCross RefCross Ref
  334. F. R. Moore, "A General Model for Spatial Processing of Sounds," Comput. Music J., vol. 7, no. 3, pp. 6--15 (1983 Fall).Google ScholarGoogle ScholarCross RefCross Ref
  335. M. Tamminen, "The EXCELL Method for Efficient Geometric Access to Data," Acta Polytechnica Scandinavica, Math. and Comput. Sci. Ser., no. 34 (1981).Google ScholarGoogle Scholar
  336. H. Samet, The Design and Analysis of Spatial Data Structures (Addison-Wesley, Reading, MA, 1990). Google ScholarGoogle ScholarDigital LibraryDigital Library
  337. H. Bass and H. J. Bauer, "Atmospheric Absorption of Sound: Analytical Expressions," J. Acoust. Soc. Am., vol. 52, pp. 821--825 (1972).Google ScholarGoogle ScholarCross RefCross Ref
  338. ISO 9613--1, "Acoustics---Attenuation of Sound during Propagation Outdoors---Part I: Calculation of the Absorption of Sound by the Atmosphere," International Standards Organization, Geneva, Switzerland (1993).Google ScholarGoogle Scholar
  339. J. Huopaniemi, L. Savioja, and M. Karjalainen, "Modeling of Reflections and Air Absorption in Acoustical Spaces---A Digital Filter Design Approach," in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA'97) (New Paltz, NY, 1997 Oct. 19--22).Google ScholarGoogle Scholar
  340. G. Naylor and J. Rindel, Odeon Room Acoustics Program, Version 2.5, User Manual, Technical University of Denmark, Acoustics Laboratory, Publ. 49 (1994).Google ScholarGoogle Scholar
  341. T. Lahti and H. Møller, "The Sigyn Hall, Turku---A Concert Hall of Glass," in Proc. Nordic Acoustical Meeting (NAM'96) (Helsinki, Finland, 1996 June), pp. 43--48.Google ScholarGoogle Scholar
  342. J.-M. Jot, "Etude et réalisation d'un spatialisateur de sons par modèles physique et perceptifs," Ph.D. thesis, Ecole Nationale Supérieure des Télécommunications, Télécom Paris 92 E 019 (1992 Sept.).Google ScholarGoogle Scholar
  343. M. R. Schroeder, "An Artificial Sterephonic Effect Obtained from a Single Audio Signal," J. Audio Eng. Soc., vol. 6, pp. 74--79 (1985 Apr.).Google ScholarGoogle Scholar
  344. J. Stautner and M. Puckette, "Designing Multi-Channel Reverberators," Comput. Music J., vol. 6, pp. 569--579 (1982).Google ScholarGoogle ScholarCross RefCross Ref
  345. R. Vermeulen, "Stereo-Reverberation," J. Audio Eng. Soc., vol. 6, pp. 124--130 (1958 Apr.).Google ScholarGoogle Scholar
  346. W. Gardner, "Virtual Acoustic Room," Master's thesis, MIT, Cambridge, MA (1992).Google ScholarGoogle Scholar
  347. D. Rocchesso and J. O. Smith, "Circulant and Elliptic Feedback Delay Networks for Artificial Reverberation," IEEE Trans. Speech Audio Process., vol. 5, pp. 51--63 (1997 Jan.).Google ScholarGoogle ScholarCross RefCross Ref
  348. R. Väänänen, V. Välimäki, and J. Huopaniemi, "Efficient and Parametric Reverberator for Room Acoustics Modeling," in Proc. Int. Computer Music Conf. (ICMC'97) (Thessaloniki, Greece, 1997 Sept.), pp. 200--203.Google ScholarGoogle Scholar
  349. K. A. Riederer, "Repeatability Analysis of Head-Related Transfer Function Measurements," presented at the 105th Convention of the Audio Engineering Society, J. Audio Eng. Soc. (Abstracts), vol. 46, p. 1036 (1998 Nov.), preprint 4846.Google ScholarGoogle Scholar
  350. W. Gardner and K. Martin, "HRTF Measurements of a KEMAR," J. Acoust. Soc. Am., vol. 97, pp. 3907--3908 (1995).Google ScholarGoogle ScholarCross RefCross Ref
  351. W. Gardner, "3-D Audio Using Loudspeakers," Ph.D. thesis, MIT Media Lab., Cambridge, MA (1997 Sept.). Revised version published by Kluwer Academic, Boston, MA (1998).Google ScholarGoogle Scholar
  352. W. Martens, "Principal Components Analysis and Resynthesis of Spectral Cues to Perceived Direction," in Proc. Int. Computer Music Conf. (ICMC'87) (1987), pp. 274--281).Google ScholarGoogle Scholar
  353. J. Abel and S. Foster, "Method and Apparatus for Efficient Presentation of High-Quality Three-Dimensional Audio including Ambient Effects," US patent 5,802,180 (1998 Sept.).Google ScholarGoogle Scholar
  354. S. Mehrgardt and V. Mellert, "Transformation Characteristics of the External Human Ear," J. Acoust. Soc. Am., vol. 61, pp. 1567--1576 (1977).Google ScholarGoogle ScholarCross RefCross Ref
  355. A. Kulkarni, S. K. Isabelle, and H. S. Colburn, "On the Minimum-Phase Approximation of Head-Related Transfer Functions," in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA'95) (New Paltz, NY, 1995 Oct.).Google ScholarGoogle Scholar
  356. J. Köring and A. Schmitz, "Simplifying Cancellation of Cross-Talk for Playback of Head-Related Recordings in a Two-Speaker System," Acustica united with Acta Acustica, vol. 179, pp. 221--232 (19930.Google ScholarGoogle Scholar
  357. A. Kulkarni and H. S. Colburn, "Efficient Finite-Impulse-Response Filter Models of the Head-Related Transfer Function," J. Acoust. Soc. Am., vol. 97, p. 3278 (1995).Google ScholarGoogle Scholar
  358. A. Kulkarni and H. S. Colburn, "Infinite-Impulse-Response Filter Models of the Head-Related Transfer Function," J. Acoust. Soc. Am., vol. 97, p. 3278 (1995).Google ScholarGoogle Scholar
  359. J. Huopaniemi and M. Karjalainen, "HRTF Filter Design Based on Auditory Criteria," in Proc. Nordic Acoustical Meeting (NAM'96) (Helsinki, Finland, 1996).Google ScholarGoogle Scholar
  360. K. Hartung and A. Raab, "Efficient Modeling of Head-Related Transfer Functions," Acta Informatica, vol. 82 (suppl. 1), S88 (1996).Google ScholarGoogle Scholar
  361. J. Mackenzie, J. Huopaniemi, V. Välimäki, and I. Kale, "Low-Order Modelling of Head-Related Transfer Functions Using Balanced Model Truncation," IEEE Signal Process. Lett., vol. 4, no. 2, pp. 39--41 (1997 Feb.).Google ScholarGoogle ScholarCross RefCross Ref
  362. J. Huopaniemi and M. Karjalainen, "Review of Digital Filter Design and Implementation Methods for 3-D Sound," presented at the 102nd Convention of the Audio Engineering Society, J. Audio Eng. Soc. (Abstracts), vol. 45, p. 413 (1997 May), preprint 4461.Google ScholarGoogle Scholar
  363. S. Wu and W. Putnam, "Minimum Perceptual Spectral Distance FIR Filter Design," in Proc. Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP'97), vol. 1 (Los Alamitos, CA, 1997), pp. 447--450. (Institute of Electrical and Electronics Engineers, IEEE Computer Society Press). Google ScholarGoogle ScholarDigital LibraryDigital Library
  364. J. Huopaniemi and J. O. Smith, "Spectral and Time-Domain Preprocessing and the Choice of Modeling Error Criteria for Binaural Digital Filters," in Proc. AES 16th Int. Conf. on Spatial Sound Reproduction (Rovaniemi, Finland, 1999 Apr.), pp. 301--312.Google ScholarGoogle Scholar
  365. E. Zwicker and H. Fastl, Psychoacoustics: Facts and Models (Springer, Heidelberg, Germany, 1990). Google ScholarGoogle ScholarDigital LibraryDigital Library
  366. B. Moore and B. Glasberg, "Suggested Formulae for Calculating Auditory-Filter Bandwidths and Excitation Patterns," J. Acoust. Soc. Am., vol. 74, pp. 750--753 (1983 Sept.).Google ScholarGoogle ScholarCross RefCross Ref
  367. J. O. Smith, "Techniques for Digital Filter Design and System Identification with Application to the Violin," Ph.D. thesis, Stanford University, Stanford, CA (1983 June).Google ScholarGoogle Scholar
  368. V. Larcher and J. M. Jot, "Techniques d'interpolation de filtres audionumériques: Application à la reproduction spatiale des sons sur écouteurs," in Proc. CFA: Congrès Français d'Acoustique (1997 Apr.).Google ScholarGoogle Scholar
  369. M. A. Gerzon, "Panpot Laws for Multispeaker Stereo," presented at the 92nd Convention of the Audio Engineering Society, J. Audio Eng. Soc. (Abstracts), vol. 40, p. 447 (1992 May), preprint 3309.Google ScholarGoogle Scholar
  370. V. Pulkki and T. Lokki, "Creating Auditory Displays with Multiple Loudspeakers Using VBAP: A Case Study with DIVA Project," in Proc. Int. Conf. on Auditory Display (ICAD'98) (Glasgow, UK, 1998 Nov. 1--4). Google ScholarGoogle ScholarDigital LibraryDigital Library
  371. W. G. Gardner, "Efficient Convolution without Input-Output Delay," J. Audio Eng. Soc., vol. 43, pp. 127--136 (1994).Google ScholarGoogle Scholar
  372. J. Sandvad, "Dynamic Aspects of Auditory Virtual Environments," presented at the 100th Convention of the Audio Engineering Society, J. Audio Eng. Soc. (Abstracts), vol. 44, p. 644 (1996 July/Aug.), preprint 4226.Google ScholarGoogle Scholar
  373. T. I. Laakso, V. Välimäki, M. Karjalainen, and U. K. Laine, "Splitting the Unit Delay---Tools for Fractional Delay Filter Design," IEEE Signal Process. Mag., vol. 13, no. 1, pp. 30--60 (1996 Jan.).Google ScholarGoogle ScholarCross RefCross Ref
  374. V. Välimäki, M. Karjalainen, Z. Janosy, and U. K. Laine, "A Real-Time DSP Implementation of a Flute Model," in Proc. 1992 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 2 (San Francisco, CA, 1992 Mar.), pp. 249--252.Google ScholarGoogle Scholar
  375. V. Välimäki, J. Huopaniemi, M. Karjalainen, and Z. Janosy, "Physical Modeling of Plucked String Instruments with Application to Real-Time Sound Synthesis," J. Audio Eng. Soc., vol. 44, pp. 331--353 (1996 May).Google ScholarGoogle Scholar
  376. E. Wenzel, "Analysis of the Role of Update Rate and System Latency in Interactive Virtual Acoustic Environments," presented at the 103rd Convention of the Audio Engineering Society, J. Audio Eng. Soc. (Abstracts), vol. 45, pp. 1017, 1018 (1997 Nov.), preprint 4633.Google ScholarGoogle Scholar
  377. E. Wenzel, "Effect of Increasing System Latency on Localization of Virtual Sounds," in Proc. AES 16th Int. Conf. on Spatial Sound Reproduction (Rovaniemi, Finland, 1999 Apr.), pp. 42--50.Google ScholarGoogle Scholar
  378. Deutsche Telekom, "Investigations on Tolerable Asynchronism between Audio and Video," Doc. 11A/DTAG1, Question ITU-R 35--2/11 (1995 Apr.).Google ScholarGoogle Scholar
  379. M. P. Hollier and A. N. Rimell, "An Experimental Investigation into Multi-Modal Synchronisation Sensitivity for Perceptual Model Development," presented at the 105th Convention of the Audio Engineering Society, J. Audio Eng. Soc. (Abstracts), vol. 46, p. 1033 (1998 Nov.), preprint 4790.Google ScholarGoogle Scholar
  380. H. Möller and T. Lahti, "Acoustical Design of the Marienkirche Concert Hall, Neubrandenburg" (Abstract), J. Acoust. Soc. Am., vol. 105, pp. 928--929 (1999 Feb.).Google ScholarGoogle ScholarCross RefCross Ref
  381. T. Takala, E. Rousku, T. Lokki, L. Savioja, J. Huopaniemi, R. Väänänen, V. Pulkki, and P. Salminen, "Marienkirche---A Visual and Aural Demonstration Film," in Electronic Art and Animation Catalogue (SIGGRAPH'98) (Orlando, FL, 1998 July 19--24), p. 149. Presented at SIGGRAPH'98 Computer Animation Festival (Electronic Theater). Google ScholarGoogle ScholarDigital LibraryDigital Library
  382. L. Beranek, Concert and Opera Halls---How They Sound (Acoustical Society of America, New York, 1996).Google ScholarGoogle ScholarCross RefCross Ref
  383. E. M. Wenzel, "What Perception Implies about Implementation of Interactive Virtual Acoustic Environments," presented at the 101st Convention of the Audio Engineering Society, J. Audio Eng. Soc. (Abstracts), vol. 44, p. 1165 (1996 Dec.), preprint 4353.Google ScholarGoogle Scholar
  384. C. Cruz-Neira, D. Sandin, T. DeFanti, R. Kenyon, and J. Hart, "The Cave---Audio Visual Experience Automatic Virtual Environment," Commun. ACM, vol. 35, no. 6, pp. 64--72 (1992 June). Google ScholarGoogle ScholarDigital LibraryDigital Library
  385. ANSI. 1978. American national standard method for the calculation of the absorption of sound by the atmosphere. ANSI S1.26--1978, American Institute of Physics (for Acoustical Society of America), New York.Google ScholarGoogle Scholar
  386. Begault, D. R., McClain, B. U., and Anderson, M. R. 2001. Early reflection thresholds for virtual sound sources. In Proc. 2001 Int. Workshop on Spatial Media.Google ScholarGoogle Scholar
  387. Begault, D. R. 1994. 3D Sound for Virtual Reality and Multimedia. Academic Press Professional. Google ScholarGoogle ScholarDigital LibraryDigital Library
  388. Blauert, J. 1983. Spatial Hearing: The Psychophysics of Human Sound Localization. M.I.T. Press, Cambridge, MA.Google ScholarGoogle Scholar
  389. Borish, J. 1984. Extension of the image model to arbitrary polyhedra. J. of the Acoustical Society of America 75, 6.Google ScholarGoogle Scholar
  390. Brandenburg, K. 1999. mp3 and AAC explained. AES 17th International Conference on High-Quality Audio Coding (Sept.).Google ScholarGoogle Scholar
  391. Bregman, A. 1990. Auditory Scene Analysis, The perceptual organization of sound. The MIT Press.Google ScholarGoogle Scholar
  392. Chen, J., Veen, B. V., and Hecox, K. 1995. A spatial feature extraction and regularization model for the head-related transfer function. J. of the Acoustical Society of America 97 (Jan.), 439--452.Google ScholarGoogle Scholar
  393. Chen, H., Wallace, G., Gupta, A., Li, K., Funkhouser, T., and Cook, P. 2002. Experiences with scalability of display walls. Proceedings of the Immersive Projection Technology (IPT) Workshop (Mar.).Google ScholarGoogle Scholar
  394. Direct Sound 3D, 2004. Direct X homepage, Microsoft©. http://www.microsoft.com/windows/directx/default.asp.Google ScholarGoogle Scholar
  395. Dobashi, Y., Yamamoto, T., and Nishita, T. 2003. Real-time rendering of aerodynamic sound using sound textures based on computational fluid dynamics. ACM Transactions on Graphics 22, 3 (Aug.), 732--740. (Proceedings of ACM SIGGRAPH 2003). Google ScholarGoogle ScholarDigital LibraryDigital Library
  396. EAX, 2004. Environmental audio extensions 4.0, Creative©. http://www.soundblaster.com/eaudio.Google ScholarGoogle Scholar
  397. Ellis, D. 1992. A perceptual representation of audio. Master's thesis, Massachusets Institute of Technology.Google ScholarGoogle Scholar
  398. Faller, C., and Baumgarte, F. 2002. Binaural cue coding applied to audio compression with flexible rendering. In Proc. 113th AES Convention.Google ScholarGoogle Scholar
  399. Filipanits, F. 1994. Design and implementation of an auralization system with a spectrum-based temporal processing optimization. Master thesis, Univ. of Miami.Google ScholarGoogle Scholar
  400. Fouad, H., Hahn, J., and Ballas, J. 1997. Perceptually based scheduling algorithms for real-time synthesis of complex sonic environments. proceedings of the 1997 International Conference on Auditory Display (ICAD'97), Xerox Palo Alto Research Center, Palo Alto, USA.Google ScholarGoogle Scholar
  401. Fouad, H., Ballas, J., and Brock, D. 2000. An extensible toolkit for creating virtual sonic environments. Proceedings of Intl. Conf. on Auditory Display (Atlanta, USA, May 2000).Google ScholarGoogle Scholar
  402. Funkhouser, T., and Sequin, C. 1993. Adaptive display algorithms for interactive frame rates during visualization of complex virtual environments. Computer Graphics (SIGGRAPH '93 proceedings), Los Angeles, CA (August), 247--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  403. Funkhouser, T., Min, P., and Carlbom, I. 1999. Real-time acoustic modeling for distributed virtual environments. ACM Computer Graphics, SIGGRAPH'99 Proceedings (Aug.), 365--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  404. Gardner, W. 1997. Reverberation algorithms. In Applications of Digital Signal Processing to Audio and Acoustics, M. Kahrs and K. Brandenburg, Eds. Kluwer Academic Publishers, 85--131.Google ScholarGoogle Scholar
  405. Grewin, C. 1993. Methods for quality assessment of low bit-rate audio codecs. proceedings of the 12th AES conference, 97--107.Google ScholarGoogle Scholar
  406. Herder, J. 1999. Optimization of sound spatialization resource management through clustering. The Journal of Three Dimensional Images, 3D-Forum Society 13, 3 (Sept.), 59--65.Google ScholarGoogle Scholar
  407. Herder, J. 1999. Visualization of a clustering algorithm of sound sources based on localization errors. The Journal of Three Dimensional Images, 3D-Forum Society 13, 3 (Sept.), 66--70.Google ScholarGoogle Scholar
  408. Hochbaum, D. S., and Schmoys, D. B. 1985. A best possible heuristic for the k-center problem. Mathematics of Operations Research 10, 2 (May), 180--184.Google ScholarGoogle Scholar
  409. ITU-R. 1994. Methods for subjective assessment of small impairments in audio systems including multichannel sound systems, ITU-R BS 1116.Google ScholarGoogle Scholar
  410. Lagrange, M., and Marchand, S. 2001. Real-time additive synthesis of sound by taking advantage of psychoacoustics. In Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6--8.Google ScholarGoogle Scholar
  411. Larsson, P., Västfjäll, D., and Kleiner, M. 2002. Better presence and performance in virtual environments by improved binaural sound rendering. proceedings of the AES 22nd Intl. Conf. on virtual, synthetic and entertainment audio, Espoo, Finland (June), 31--38.Google ScholarGoogle Scholar
  412. Likas, A., Vlassis, N., and Verbeek, J. 2003. The global k-means clustering algorithm. Pattern Recognition 36, 2, 451--461.Google ScholarGoogle Scholar
  413. Lokki, T., Gröhn, M., Savioja, L., and Takala, T. 2000. A case study of auditory navigation in virtual acoustic environments. Proceedings of Intl. Conf. on Auditory Display (ICAD2000).Google ScholarGoogle Scholar
  414. Martens, W. 1987. Principal components analysis and resynthesis of spectral cues to perceived direction. In Proc. Int. Computer Music Conf. (ICMC'87), 274--281.Google ScholarGoogle Scholar
  415. Moore, B. C. J., Glasberg, B., and Baer, T. 1997. A model for the prediction of thresholds, loudness and partial loudness. J. of the Audio Engineering Society 45, 4, 224--240. Software available at http://hearing.psychol.cam.ac.uk/Demos/demos.html.Google ScholarGoogle Scholar
  416. Moore, B. C. 1997. An introduction to the psychology of hearing. Academic Press, 4th edition.Google ScholarGoogle Scholar
  417. Painter, E. M., and Spanias, A. S. 1997. A review of algorithms for perceptual coding of digital audio signals. DSP-97.Google ScholarGoogle Scholar
  418. Paquette, E., Poulin, P., and Drettakis, G. 1998. A light hierarchy for fast rendering of scenes with many lights. Proceedings of EUROGRAPHICS'98.Google ScholarGoogle Scholar
  419. Pierce, A. 1984. Acoustics. An introduction to its physical principles and applications. 3rd edition, American Institute of Physics.Google ScholarGoogle Scholar
  420. Savioja, L., Huopaniemi, J., Lokki, T., and Väänänen, R. 1999. Creating interactive virtual acoustic environments. J. of the Audio Engineering Society 47, 9 (Sept.), 675--705.Google ScholarGoogle Scholar
  421. Sensaura, 2001. ZoomFX, MacroFX, Sensaura©. http://www.sensaura.co.uk.Google ScholarGoogle Scholar
  422. SoundBlaster, 2004. Creative Labs Soundblaster©. http://www.soundblaster.com.Google ScholarGoogle Scholar
  423. Steiglitz, K. 1996. A DSP Primer with applications to digital audio and computer music. Addison Wesley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  424. Tsingos, N., and Gascuel, J.-D. 1997. Soundtracks for computer animation: sound rendering in dynamic environments with occlusions. Proceedings of Graphics Interface'97 (May), 9--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  425. Tsingos, N., Funkhouser, T., Ngan, A., and Carlbom, I. 2001. Modeling acoustics in virtual environments using the uniform theory of diffraction. ACM Computer Graphics, SIGGRAPH'01 Proceedings (Aug.), 545--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  426. van den Doel, K., Pai, D. K., Adam, T., Kortchmar, L., and Pichora-Fuller, K. 2002. Measurements of perceptual quality of contact sound models. In Proceedings of the International Conference on Auditory Display (ICAD 2002), Kyoto, Japan, 345--349.Google ScholarGoogle Scholar
  427. van den Doel, K., Knott, D., and Pai, D. K. 2004. Interactive simulation of complex audio-visual scenes. Presence: Teleoperators and Virtual Environments 13, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  428. Vroomen, J., and de Gelder, B. 2004. Perceptual effects of cross-modal stimulation: Ventriloquism and the freezing phenomenon. In Handbook of multisensory processes, G. Calvert, C. Spence, and B. E. Stein, Eds. M.I.T. Press.Google ScholarGoogle Scholar
  429. Wenzel, E., Miller, J., and Abel, J. 2000. A software-based system for interactive spatial sound synthesis. Proceeding of ICAD 2000, Atlanta, USA (April).Google ScholarGoogle Scholar
  430. Zwicker, E., and Fastl, H. 1999. Psychoacoustics: Facts and Models. Springer. Second Upadated Edition. Google ScholarGoogle ScholarDigital LibraryDigital Library
  431. M. A. Biot and I. Tolstoy, "Formulation of wave propagation in infinite media by normal coordinates with an application to diffraction," J. Acoust. Soc. Am. 29, 381--391 (1957).Google ScholarGoogle ScholarCross RefCross Ref
  432. H. Medwin, "Shadowing by finite noise barriers," J. Acoust. Soc. Am. 69, 1060--64 (1981).Google ScholarGoogle ScholarCross RefCross Ref
  433. H. Medwin, E. Childs, and G. M. Jebsen, "Impulse studies of double diffraction: A discrete Huygens interpretation," J. Acoust. Soc. Am. 72, 1005--1013 (1982).Google ScholarGoogle ScholarCross RefCross Ref
  434. J. P. Chambers and Y. H. Berthelot, "Time-domain experiments on the diffraction of sound by a step discontinuity," J. Acoust. Soc. Am. 96, 1887--1892 (1994).Google ScholarGoogle ScholarCross RefCross Ref
  435. D. Ouis, "Scattering by thin strip-like elements and applications in room acoustics," Dissertation, Report TVBA-1005, Lund University of Technology, Lund, Sweden (1995).Google ScholarGoogle Scholar
  436. A. W. Trorey, "Diffractions for arbitrary source-receiver locations," Geophysics 42, 1177--1182 (1977).Google ScholarGoogle ScholarCross RefCross Ref
  437. J. R. Berryhill, "Diffraction response for nonzero separation of source and receiver," Geophysics 42, 1158--1176 (1977).Google ScholarGoogle ScholarCross RefCross Ref
  438. Y. Sakurai and K. Nagata, "Sound reflections of a rigid plane and of the live end composed by those panels," J. Acoust. Soc. Jpn. (E) 2, 5--14 (1981).Google ScholarGoogle ScholarCross RefCross Ref
  439. G. M. Jebsen and H. Medwin, "On the failure of the Kirchhoff assumption in backscatter," J. Acoust. Soc. Am. 72, 1607--11 (1982).Google ScholarGoogle ScholarCross RefCross Ref
  440. G. V. Norton, J. C. Novarini, and R. S. Keiffer, "An evaluation of the Kirchhoff approximation in predicting the axial impulse response of hard and soft disks," J. Acoust. Soc. Am. 93, 3049--3056 (1993).Google ScholarGoogle ScholarCross RefCross Ref
  441. R. S. Keiffer, J. C. Novarini, and G. V. Norton, "The impulse response of an aperture: Numerical calculations within the framework of the wedge assemblage method," J. Acoust. Soc. Am. 95, 3--12 (1994).Google ScholarGoogle ScholarCross RefCross Ref
  442. A. D. Pierce, "Diffraction of sound around corners and over wide barriers," J. Acoust. Soc. Am. 55, 941--955 (1974).Google ScholarGoogle ScholarCross RefCross Ref
  443. R. G. Kouyoumjian and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE 62, 1448--1461 (1974).Google ScholarGoogle ScholarCross RefCross Ref
  444. C. S. Clay and W. A. Kinney, "Numerical computations of time-domain diffractions from wedges and reflections from facets," J. Acoust. Soc. Am. 83, 2126--2133 (1988).Google ScholarGoogle ScholarCross RefCross Ref
  445. W. A. Kinney, C. S. Clay, and G. A. Sandness, "Scattering from a corrugated surface: Comparison between experiment, Helmholtz-Kirchhoff theory, and the facet ensemble method," J. Acoust. Soc. Am. 73, 183--194 (1983).Google ScholarGoogle ScholarCross RefCross Ref
  446. J. Vanderkooy, "A simple theory of cabinet edge diffraction," J. Aud. Eng. Soc. 39, 923--933 (1991).Google ScholarGoogle Scholar
  447. J. J. Bowman and T. B. A. Senior, Electromagnetic and Acoustic Scattering by Simple Shapes, edited by J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi (North-Holland, Amsterdam, 1969), Chap. 6.Google ScholarGoogle Scholar
  448. T. Kawai, "Sound diffraction by a many sided barrier or pillar," J. Sound Vib. 79, 229--242 (1981).Google ScholarGoogle ScholarCross RefCross Ref
  449. T. J. Cox and Y. W. Lam, "Evaluation of methods for predicting the scattering from simple rigid panels," Appl. Acoust. 40, 123--140 (1993).Google ScholarGoogle ScholarCross RefCross Ref
  450. B.-I. Dalenbäck, "Room acoustic prediction based on a unified treatment of diffuse and specular reflection," J. Acoust. Soc. Am. 100, 899--909 (1996).Google ScholarGoogle ScholarCross RefCross Ref
  451. Chaigne, A., and Doutaut, V. 1997. Numerical simulations of xylophones. i. time domain modeling of the vibrating bars. J. Acoust. Soc. Am. 101, 1, 539--557.Google ScholarGoogle Scholar
  452. Chung, J. Y., Liu, J., and Lin, K. J. 1987. Scheduling real-time, periodic jobs using imprecise results. In Proc. IEEE RTS.Google ScholarGoogle Scholar
  453. Dongarra, J. J. 2005. Performance of various computers using standard linear equations software (linpack benchmark report). Tech. rep., Knoxville, TN, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  454. Florens, J. L., and Cadoz, C. 1991. The physical model: modeling and simulating the instrumental universe. In Represenations of Musical Signals, G. D. Poli, A. Piccialli, and C. Roads, Eds. MIT Press, Cambridge, MA, USA, 227--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  455. Fouad, H., Ballas, J., and Hahn, J. 1997. Perceptually based scheduling algorithms for real-time synthesis of complex sonic environments. In Proc. Int. Conf. Auditory Display.Google ScholarGoogle Scholar
  456. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Nonconvex rigid bodies with stacking. ACM Trans. on Graphics (Proc. of ACM SIGGRAPH) 22, 871--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  457. Kim, Y. J., Lin, M. C., and Manocha, D. 2002. DEEP: an incremental algorithm for penetration depth computation between convex polytopes. Proc. of IEEE Conference on Robotics and Automation, 921--926.Google ScholarGoogle Scholar
  458. Mirtich, B., and Canny, J. 1995. Impulse-based simulation of rigid bodies. In 1995 Symposium on Interactive 3D Graphics, P. Hanrahan and J. Winget, Eds., ACM SIGGRAPH, 181--188. ISBN 0-89791-736-7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  459. O'Brien, J. F., Cook, P. R., and Essl, G. 2001. Synthesizing sounds from physically based motion. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM Press, New York, NY, USA, 529--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  460. O'Brien, J. F., Shen, C., and Gatchalian, C. M. 2002. Synthesizing sounds from rigid-body simulations. In The ACM SIGGRAPH 2002 Symposium on Computer Animation, ACM Press, 175--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  461. Sek, A., and Moore, B. C. 1995. Frequency discrimination as a function of frequency, measured in several ways. J. Acoust. Soc. Am. 97, 4 (April), 2479--2486.Google ScholarGoogle Scholar
  462. van den Doel, K., and Pai, D. K. 1996. Synthesis of shape dependent sounds with physical modeling. In Proceedings of the International Conference on Auditory Displays.Google ScholarGoogle Scholar
  463. van den Doel, K., and Pai, D. K. 1998. The sounds of physical shapes. Presence 7, 4, 382--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  464. van den Doel, K., Kry, P. G., and Pai, D. K. 2001. Foleyautomatic: physically-based sound effects for interactive simulation and animation. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM Press, New York, NY, USA, 537--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  465. van den Doel, K., Knott, D., and Pai, D. K. 2004. Interactive simulation of complex audiovisual scenes. Presence: Teleoper. Virtual Environ. 13, 1, 99--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  466. Zwicker, E., and Fastl, H. 1990. In Psychoacoustics. Springer-Verlag, Berlin.Google ScholarGoogle Scholar
  467. J. M. Airey, J. H. Rohlf, and F. P. Brooks, Jr. Towards image realism with interactive update rates in complex virtual building environments. In Rich Riesenfeld and Carlo Séquin, editors, Computer Graphics (1990 Symposium on Interactive 3D Graphics), pages 41--50, March 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  468. L. Aveneau and M. Meriaux. Rendering polygonal scenes with diffraction account. Seventh International Conference in Central Europe on Computer Graphics and Visualization (Winter School on Computer Graphics), February 1999.Google ScholarGoogle Scholar
  469. L. Aveneau, Y. Pousset, R. Vauzelle, and M. Mériaux. Development and evaluations of physical and computer optimizations for the 3d utd model. AP2000 Millennium Conference on Antennas&Propagation (poster), April 2000.Google ScholarGoogle Scholar
  470. H. L. Bertoni. Coverage prediction for mobile radio systems operating in the 800/900 MHz frequency range. IEEE Transactions on Vehicular Technology (Special Issue on Mobile Radio Propagation), 37(1), February 1988.Google ScholarGoogle Scholar
  471. J. Blauert. Spatial Hearing: The Psychophysics of Human Sound Localization. M.I.T. Press, Cambridge, MA, 1983.Google ScholarGoogle Scholar
  472. M. Born and E. Wolf. Principles of Optics. 7th ed., Pergamon Press, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  473. B.-I. L. Dalenbäck. Room acoustic prediction based on a unified treatment of diffuse and specular reflection. J. of the Acoustical Soc. of America, 100:899--909, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  474. G. Drettakis. Structured Sampling and Reconstruction of Illumination for Image Synthesis. PhD thesis, University of Toronto, January 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  475. N. I. Durlach and A. S. Mavor. Virtual reality scientific and technological challenges. National Research Council Report, National Academy Press, 1995.Google ScholarGoogle Scholar
  476. P. Filippi, D. Habault, J. P. Lefevre, and A. Bergassoli. Acoustics, basic physics, theory and methods. Academic Press, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  477. S. J. Fortune. Topological beam tracing. In Proc. 15th ACM Symposium on Computational Geometry, pages 59--68, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  478. T. Funkhouser, I. Carlbom, G. Elko, G. Pingali, M. Sondhi, and J. West. A beam tracing approach to acoustic modeling for interactive virtual environments. ACM Computer Graphics, Proc. SIGGRAPH98, pages 21--32, July 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  479. T. Funkhouser, P. Min, and I. Carlbom. Real-time acoustic modeling for distributed virtual environments. ACM Computer Graphics, Proc. SIGGRAPH99, pages 365--374, August 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  480. J. Goodman and J. O'Rourke, editors. Handbook of Discrete and Computational Geometry. CRC Press, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  481. P. Heckbert and P. Hanrahan. Beam tracing polygonal objects. Computer Graphics (SIGGRAPH84), 18(3):119--127, July 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  482. D. C. Hothersall, S. N. Chandler-Wilde, and M. N. Hajmirzae. Efficiency of single noise barriers. J. of Sound and Vibration, 146(2):303--322, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  483. C. Huygens. Traité de la Lumiere. London, Macmillan&Co., 1912.Google ScholarGoogle Scholar
  484. P. Jean. A variational approach for the study of outdoor sound propagation and application to railway noise. J. of Sound and Vibration, 212(2):275--294, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  485. C. B. Jones. A new approach to the 'hidden line' problem. Computer Journal, 14(3):232--237, August 1971.Google ScholarGoogle ScholarCross RefCross Ref
  486. T. Kawai. Sound diffraction by a many sided barrier or pillar. J. of Sound and Vibration, 79(2):229--242, 1981.Google ScholarGoogle ScholarCross RefCross Ref
  487. J. B. Keller. Geometrical theory of diffraction. J. of the Optical Society of America, 52(2):116--130, 1962.Google ScholarGoogle ScholarCross RefCross Ref
  488. S. C. Kim, B. Guarino, T. Willis, V. Erceg, S. Fortune, R. Valenzuela, L. Thomas, J. Ling, and J. Moore. Radio propagation measurements and prediction using three-dimensional ray tracing in urban environments at 908 MHz and 1.9 GHz. IEEE Trans. on Vehicular Technology, 48:931--946, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  489. M. Kleiner, B. I. Dalenbäk, and P. Svensson. Auralization - an overview. J. of the Audio Engineering Society, 41(11):861--875, November 1993.Google ScholarGoogle Scholar
  490. R. G. Kouyoumjian and P. H. Pathak. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proc. of IEEE, 62:1448--1461, November 1974.Google ScholarGoogle ScholarCross RefCross Ref
  491. H. Lehnert and J. Blauert. Principles of binaural room simulation. Applied Acoustics, 36:259--291, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  492. D. A. McNamara, C. W. I. Pistorius, and J. A. G. Malherbe. Introduction to the Uniform Geometrical Theory of Diffraction. Artech House, 1990.Google ScholarGoogle Scholar
  493. H. Medwin, E. Childs, and G. Jebsen. Impulse studies of double diffraction: A discrete huygens interpretation. J. Acoust. Soc. Am., 72:1005--1013, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  494. P. Min and T. Funkhouser. Priority-driven acoustic modeling for virtual environments. Proc. Eurographics'2000, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  495. J. S. B. Mitchell. Geometric shortest paths and network optimization. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry. Elsevier Science Publishers B. V. North-Holland, Amsterdam, 1998.Google ScholarGoogle Scholar
  496. B. C. J. Moore. An introduction to the psychology of hearing. Academic Press, 4th ed., 1997.Google ScholarGoogle Scholar
  497. A. D. Pierce. Acoustics. An introduction to its physical principles and applications. 3rd ed., American Institute of Physics, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  498. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C, 2nd ed. Cambridge University Press, New York, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  499. A. Rajkumar, B. F. Naylor, F. Feisullin, and L. Rogers. Predicting RF coverage in large environments using ray-beam tracing and partitioning tree represented geometry. Wireless Networks, 2(2):143--154, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  500. L. Savioja, J. Huopaniemi, T. Lokki, and R. Väänänen. Creating interactive virtual acoustic environments. J. of the Audio Engineering Society, 47(9):675--705, September 1999.Google ScholarGoogle Scholar
  501. J. Stam. Diffraction shaders. ACM Computer Graphics, Proc. SIGGRAPH99, pages 101--110, August 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  502. U. Stephenson and U. Kristiansen. Pyramidal beam tracing and time dependent radiosity. 15th International Congress on Acoustics, pages 657--660, June 1995.Google ScholarGoogle Scholar
  503. R. L. Storms. Auditory-Visual Cross-Modal Perception Phenomena. PhD thesis, Naval Postgraduate School, Monterey, California, September 1998.Google ScholarGoogle Scholar
  504. U. P. Svensson, R. I. Fred and J. Vanderkooy Analytic secondary source model of edge diffraction impulse responses. J. of the Acoustical Society of America, 106:2331--2344, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  505. S. Teller. Computing the antiumbra cast by an area light source. Computer Graphics (SIGGRAPH92), 26(2):139--148, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  506. S. Teller. Visibility Computations in Densely Occuded Polyhedral Environments. PhD thesis, Computer Science Div., Univ. of California, Berkeley, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  507. R. Torres, P. Svensson and M. Kleiner. Computation of edge diffraction for more accurate room acoustics auralization. J. of the Acoustical Society of America, 109:600--610, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  508. R. Torres. Studies of Edge Diffraction and Scattering: Applications to Room acoustics and Auralization. PhD thesis, Dept. of Applied Acoustics, Chalmers University of Technology, Sweden, 2000.Google ScholarGoogle Scholar
  509. N. Tsingos and J.-D. Gascuel. Soundtracks for computer animation: sound rendering in dynamic environments with occlusions. Proceedings of Graphics Interface'97, pages 9--16, May 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  510. {AB79} Allen J. B., Berkley D. A.: Image method for efficiently simulating small-room acoustics. The Journal of the Acoustical Society of America 65, 4 (April 1979), 943--950.Google ScholarGoogle ScholarCross RefCross Ref
  511. {AMA05} Akenine-Möller T., Aila T.: Conservative and tiled rasterization using a modified triangle set-up. journal of graphics tools 10, 3 (2005), 1--8.Google ScholarGoogle Scholar
  512. {BHS98} Bittner J., Havran V., Slavik P.: Hierarchical visibility culling with occlusion trees. Computer Graphics International, 1998. Proceedings (Jun 1998), 207--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  513. {BW05} Bittner J., Wonka P.: Fast exact from-region visibility in urban scenes. Eurographics Symposium on Rendering (2005), 223--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  514. {CLT*08} Chandak A., Lauterbach C., Taylor M., Ren Z., Manocha D.: Ad-frustum: Adaptive frustum tracing for interactive sound propagation. In Proc. IEEE Visualization (2008).Google ScholarGoogle ScholarDigital LibraryDigital Library
  515. {COCSD03} Cohen-Or D., Chrysanthou Y., Silva C., Durand F.: A survey of visibility for walkthrough applications. Visualization and Computer Graphics, IEEE Transactions on 9, 3 (July-Sept. 2003), 412--431. Google ScholarGoogle ScholarDigital LibraryDigital Library
  516. {CT97} Coorg S., Teller S.: Real-time occlusion culling for models with large occluders. In SI3D '97: Proceedings of the 1997 symposium on Interactive 3D graphics (New York, NY, USA, April 1997), ACM, pp. 83--ff. Google ScholarGoogle ScholarDigital LibraryDigital Library
  517. {DD02} Duguet F., Drettakis G.: Robust epsilon visibility. Proc. of ACM SIGGRAPH (2002), 567--575. Google ScholarGoogle ScholarDigital LibraryDigital Library
  518. {Dur99} Durand F.: 3D Visibility, Analysis and Applications. PhD thesis, U. Joseph Fourier, 1999.Google ScholarGoogle Scholar
  519. {FCE*98} Funkhouser T., Carlbom I., Elko G., Pingali G., Sondhi M., West J.: A beam tracing approach to acoustic modeling for interactive virtual environments. In Proc. of ACM SIGGRAPH (1998), pp. 21--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  520. {Gha01} Ghali S.: A survey of practical object space visibility algorithms. In SIGGRAPH Tutorial Notes (2001).Google ScholarGoogle Scholar
  521. {HH84} Heckbert P. S., Hanrahan P.: Beam tracing polygonal objects. In Proc. of ACM SIGGRAPH (1984), pp. 119--127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  522. {HMC*97} Hudson T., Manocha D., Cohen J., Lin M., Hoff K., Zhang H.: Accelerated occlusion culling using shadow frusta. In Proc. of ACM Symposium on Computational Geometry (1997), pp. 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  523. {KCCO00} Koltun V., Chrysanthou Y., Cohen-Or D.: Virtual occluders: An efficient intermediate pvs representation. In Eurpographics Workshop on Rendering (2000), pp. 59--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  524. {KS00} Klosowski J., Silva C.: The prioritized-layered projection algorithm for visible set estimation. IEEE Trans. on Visualization and Computer Graphics 6, 2 (2000), 108--123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  525. {Lai06} Laine S.: An Incremental Shaft Subdivision Algorithm for Computing Shadows and Visibility. Master's thesis, Helsinki University of Technology, March 2006.Google ScholarGoogle Scholar
  526. {Len93} Lenhert H.: Systematic errors of the ray-tracing algoirthm. Applied Acoustics 38 (1993), 207--221.Google ScholarGoogle ScholarCross RefCross Ref
  527. {LG95} Luebke D., Georges C.: Portals and mirrors: Simple, fast evaluation of potentially visible sets. In ACM Interactive 3D Graphics Conference (Monterey, CA, 1995), pp. 105--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  528. {LSCO03} Leyvand T., Sorkine O., Cohen-Or D.: Ray space factorization for from-region visibility. Proc. of ACM SIGGRAPH (2003), 595--604. Google ScholarGoogle ScholarDigital LibraryDigital Library
  529. {LSLS09} Laine S., Siltanen S., Lokki T., Savioja L.: Accelerated beam tracing algorithm. Applied Acoustic 70, 1 (2009), 172--181.Google ScholarGoogle ScholarCross RefCross Ref
  530. {MBW08} Mattausch O., Bittner J., Wimmer M.: Chc++: Coherent hierarchical culling revisted. Proc. of Eurographics (2008), 221--230.Google ScholarGoogle ScholarCross RefCross Ref
  531. {NB04} Nirenstein S., Blake E.: Hardware accelerated visibility preprocessing using adaptive sampling. In Eurographics Workshop on Rendering (2004). Google ScholarGoogle ScholarDigital LibraryDigital Library
  532. {Nir03} Nirenstein S.: Fast and Accurate Visibility Preprocessing. PhD thesis, University of Cape Town, South Africa, 2003.Google ScholarGoogle Scholar
  533. {NRJS03} Navazo I., Rossignac J., Jou J., Sharif R.: Shieldtester: Cell-to-cell visibility test for surface occluderis. In Proc. of Eurographics (2003), pp. 291--302.Google ScholarGoogle ScholarCross RefCross Ref
  534. {ORM07} Overbeck R., Ramamoorthi R., Mark W. R.: A Real-time Beam Tracer with Application to Exact Soft Shadows. In Eurographics Symposium on Rendering (Jun 2007), pp. 85--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  535. {RSH05} Reshetov A., Soupikov A., Hurley J.: Multi-level ray tracing algorithm. ACM Trans. Graph. 24, 3 (2005), 1176--1185. Google ScholarGoogle ScholarDigital LibraryDigital Library
  536. {Sho98} Shoemake K.: Pluecker coordinate tutorial. Ray Tracing News 11, 1 (1998).Google ScholarGoogle Scholar
  537. {Tel92} Teller S. J.: Visibility Computations in Densely Occluded Polyheral Environments. PhD thesis, CS Division, UC Berkeley, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  538. {WWZ*06} Wonka P., Wimmer M., Zhou K., Maierhofer S., Hesina G., Reshetov A.: Guided visibility sampling. Proc. of ACM SIGGRAPH (2006), 494--502. Google ScholarGoogle ScholarDigital LibraryDigital Library
  539. V. Algazi, R. Duda, and D. Thompson. The CIPIC HRTF Database. In IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics, 2001.Google ScholarGoogle Scholar
  540. F. Antonacci, M. Foco, A. Sarti, and S. Tubaro. Real time modeling of acoustic propagation in complex environments. In Proc. of 7th International Conference on Digital Audio Effects, 2004.Google ScholarGoogle Scholar
  541. M. Bertram, E. Deines, J. Mohring, J. Jegorovs, and H. Hagen. Phonon tracing for auralization and visualization of sound. In Proceedings of IEEE Visualization 2005, pages 151--158, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  542. J. Borish. Extension of the image model to arbitrary polyhedra. Journal of the Acoustical Society of America, 75(6):1827--1836, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  543. C. Brebbia, editor. Computational Acoustics and its Environmental Applications. Transactions of the Wessex Institute, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  544. L. Carpenter. The a-buffer, an antialiased hidden surface method. In SIGGRAPH '84: Proceedings of the 11th annual conference on Computer graphics and interactive techniques, pages 103--108, New York, NY, USA, 1984. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  545. P. R. Cook. Real Sound Synthesis for Interactive Applications. A. K. Peters, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  546. B.-I. Dalenbäck, P. Svensson, and M. Kleiner. Room acoustic prediction and auralization based on an extended image source model. The Journal of the Acoustical Society of America, 92(4):2346, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  547. E. Deines, M. Bertram, J. Mohring, J. Jegorovs, F. Michel, H. Hagen, and G. Nielson. Comparative visualization for wave-based and geometric acoustics. IEEE Transactions on Visualization and Computer Graphics, 12(5), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  548. I. A. Drumm. The Development and Application of an Adaptive Beam Tracing Algorithm to Predict the Acoustics of Auditoria. PhD thesis, 1997.Google ScholarGoogle Scholar
  549. A. Farina. Ramsete - a new pyramid tracer for medium and large scale acoustic problems. In Proceedings of EURO-NOISE, 1995.Google ScholarGoogle Scholar
  550. T. Funkhouser, I. Carlbom, G. Elko, G. Pingali, M. Sondhi, and J. West. A beam tracing approach to acoustic modeling for interactive virtual environments. In Proc. of ACM SIGGRAPH, pages 21--32, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  551. T. Funkhouser, N. Tsingos, I. Carlbom, G. Elko, M. Sondhi, J. West, G. Pingali, P. Min, and A. Ngan. A beam tracing method for interactive architectural acoustics. Journal of the Acoustical Society of America, 115(2):739--756, February 2004.Google ScholarGoogle ScholarCross RefCross Ref
  552. T. Funkhouser, N. Tsingos, and J.-M. Jot. Survey of methods for modeling sound propagation in interactive virtual environment systems. Presence and Teleoperation, 2003.Google ScholarGoogle Scholar
  553. T. A. Funkhouser, P. Min, and I. Carlbom. Real-time acoustic modeling for distributed virtual environments. In Proc. of ACM SIGGRAPH, pages 365--374, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  554. M. A. Garcia-Ruiz and J. R. Gutierrez-Pulido. An overview of auditory display to assist comprehension of molecular information. Interact. Comput., 18(4):853--868, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  555. J. Genetti and D. Gordon. Ray tracing with adaptive supersampling in object space. In Graphics Interface '93, pages 70--77, 1993.Google ScholarGoogle Scholar
  556. P. S. Heckbert and P. Hanrahan. Beam tracing polygonal objects. In Proc. of ACM SIGGRAPH, pages 119--127, 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  557. D. L. James, J. Barbic, and D. K. Pai. Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources. In Proc. of ACM SIGGRAPH, pages 987--995, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  558. D. G. Jon Genetti and G. Williams. Adaptive supersampling in object space using pyramidal rays. Computer Graphics Forum, 17(1):29--54, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  559. C. Joslin and N. Magnetat-Thalmann. Significant facet retrieval for real-time 3d sound rendering. In Proceedings of the ACM VRST, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  560. B. Kapralos, M. Jenkin, and E. Milios. Acoustic modeling utilizing an acoustic version of phonon mapping. In Proc. of IEEE Workshop on HAVE, 2004.Google ScholarGoogle Scholar
  561. A. Krokstad, S. Strom, and S. Sorsdal. Calculating the acoustical room response by the use of a ray tracing technique. Journal of Sound and Vibration, 8(1):118--125, July 1968.Google ScholarGoogle ScholarCross RefCross Ref
  562. K. Kunz and R. Luebbers. The Finite Difference Time Domain for Electromagnetics. CRC Press, 1993.Google ScholarGoogle Scholar
  563. K. H. Kuttruff. Auralization of impulse responses modeled on the basis of ray-tracing results. Journal of Audio Engineering Society, 41(11):876--880, November 1993.Google ScholarGoogle Scholar
  564. C. Lauterbach, S.-E. Yoon, D. Tuft, and D. Manocha. RT-DEFORM: Interactive Ray Tracing of Dynamic Scenes using BVHs. IEEE Symposium on Interactive Ray Tracing, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  565. H. Lehnert. Systematic errors of the ray-tracing algorithm. J. Applied Acoustics, 38(2--4):207--221, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  566. R. B. Loftin. Multisensory perception: Beyond the visual in visualization. Computing in Science and Engineering, 05(4):56--58, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  567. T. Lokki, L. Savioja, R. Vaananen, J. Huopaniemi, and T. Takala. Creating interactive virtual auditory environments. IEEE Computer Graphics and Applications, 22(4):49--57, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  568. M. Naef, O. Staadt, and M. Gross. Spatialized audio rendering for immersive virtual environments. In Proceedings of the ACM VRST, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  569. K. V. Nesbitt. Modelling human perception to leverage the reuse of concepts across the multi-sensory design space. In APCCM '06: Proceedings of the 3rd Asia-Pacific conference on Conceptual modelling, pages 65--74, Darlinghurst, Australia, Australia, 2006. Australian Computer Society, Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  570. J. F. O'Brien, P. R. Cook, and G. Essl. Synthesizing sounds from physically based motion. In Proc. of ACM SIGGRAPH, pages 529--536, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  571. T. Otsuru, Y. Uchinoura, R. Tomiku, N. Okamoto, and Y. Takahashi. Basic concept, accuracy and application of large-scale finite element sound field analysis of rooms. In Proc. ICA 2004 (Kyoto), pages I-479--I-482, April 2004.Google ScholarGoogle Scholar
  572. A. Rajkumar, B. F. Naylor, F. Feisullin, and L. Rogers. Predicting rf coverage in large environments using ray-beam tracing and partitioning tree represented geometry. Wirel. Netw., 2(2):143--154, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  573. A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray tracing algorithm. ACM Trans. Graph., 24(3):1176--1185, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  574. L. Savioja. Modeling Techniques for Virtual Acoustics. PhD thesis, Helsinki University of Technology, 1999.Google ScholarGoogle Scholar
  575. K. Shoemake. Pluecker coordinate tutorial. Ray Tracing News, 11(1), 1998.Google ScholarGoogle Scholar
  576. S. Smith. Auditory representation of scientific data. In Focus on Scientific Visualization, pages 337--346, London, UK, 1993. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  577. U. Stephenson. Quantized pyramidal beam tracing - a new algorithm for room acoustics and noise immission prognosis. Acustica - Acta Acustica, 82(3):517--525, 1996.Google ScholarGoogle Scholar
  578. H. Suzuki and A. S. Mohan. Frustum ray tracing technique for high spatial resolution channel characteristic map. In Radio and Wireless Conference (RAWCON) 98, pages 253--256. IEEE Press, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  579. R. Tomiku, T. Otsuru, Y. Takahashi, and D. Azuma. A computational investigation on measurements in reverberation rooms by finite element sound field analysis. In Proc. ICA 2004 (Kyoto), pages II-941--II-942, April 2004.Google ScholarGoogle Scholar
  580. N. Tsingos, E. Gallo, and G. Drettakis. Perceptual audio rendering of complex virtual environments. ACM Trans. Graph., 23(3):249--258, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  581. K. van den Doel, D. Knott, and D. K. Pai. Interactive simulation of complex audio-visual scenes. Presence: Teleoperators and Virtual Environments, 13(1):99--111, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  582. I. Wald, C. Benthin, M. Wagner, and P. Slusallek. Interactive rendering with coherent ray tracing. In A. Chalmers and T.-M. Rhyne, editors, Computer Graphics Forum (Proceedings of EUROGRAPHICS 2001), volume 20, pages 153--164. Blackwell Publishers, Oxford, 2001.Google ScholarGoogle Scholar
  583. I. Wald, S. Boulos, and P. Shirley. Ray Tracing Deformable Scenes using Dynamic Bounding Volume Hierarchies. ACM Transactions on Graphics, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  584. M. Wand and W. Straßer. Multi-resolution sound rendering. In SPBG'04 Symposium on Point - Based Graphics 2004, pages 3--11, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  585. L. M. Wang, J. Rathsam, and S. R. Ryherd. Interactions of model detail level and scattering coefficients in room acoustic computer simulation. In International Symposium on Room Acoustics: Design and Science, 2004.Google ScholarGoogle Scholar
  586. T. Whitted. An improved illumination model for shaded display. Commun. ACM, 23(6):343--349, 1980. Google ScholarGoogle ScholarDigital LibraryDigital Library
  587. J. B. Allen and D. A. Berkley. Image method for efficiently simulating small-room acoustics. The Journal of the Acoustical Society of America, 65(4):943--950, April 1979.Google ScholarGoogle ScholarCross RefCross Ref
  588. M. Bertram, E. Deines, J. Mohring, J. Jegorovs, and H. Hagen. Phonon tracing for auralization and visualization of sound. In Proceedings of IEEE Visualization, pages 151--158, 2005.Google ScholarGoogle Scholar
  589. P. Calamia and U. P. Svensson. Fast Time-Domain Edge-Diffraction Calculations for Interactive Acoustic Simulations. EURASIP Journal on Advances in Signal Processing, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  590. B.-I. Dalenbäck. Room acoustic prediction based on a unified treatment of diffuse and specular reflection. The Journal of the Acoustical Society of America, 100(2):899--909, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  591. B.-I. Dalenbäck and M. Strömberg. Real time walkthrough auralization - the first year. Proceedings of the Institute of Acoustics, 28(2), 2006.Google ScholarGoogle Scholar
  592. E. Deines, M. Bertram, J. Mohring, J. Jegorovs, F. Michel, H. Hagen, and G. Nielson. Comparative visualization for wave-based and geometric acoustics. IEEE Transactions on Visualization and Computer Graphics, 12(5), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  593. I. A. Drumm and Y. W. Lam. The adaptive beam-tracing algorithm. Journal of the Acoustical Society of America, 107(3):1405--1412, March 2000.Google ScholarGoogle ScholarCross RefCross Ref
  594. A. Farina. RAMSETE - a new Pyramid Tracer for medium and large scale acoustic problems. In Proceedings of EURO-NOISE, 1995.Google ScholarGoogle Scholar
  595. S. Fortune. Topological beam tracing. In SCG '99: Proceedings of the fifteenth annual symposium on Computational geometry, pages 59--68, New York, NY, USA, 1999. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  596. T. Funkhouser, I. Carlbom, G. Elko, G. Pingali, M. Sondhi, and J. West. A beam tracing approach to acoustic modeling for interactive virtual environments. In Proc. of ACM SIGGRAPH, pages 21--32, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  597. T. Funkhouser, N. Tsingos, and J.-M. Jot. Survey of Methods for Modeling Sound Propagation in Interactive Virtual Environment Systems. Presence and Teleoperation, 2003.Google ScholarGoogle Scholar
  598. J. Genetti, D. Gordon, and G. Williams. Adaptive supersampling in object space using pyramidal rays. Computer Graphics Forum, 17:29--54, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  599. C. Joslin and N. Magnetat-Thalmann. Significant facet retrieval for real-time 3D sound rendering. In Proceedings of the ACM VRST, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  600. B. Kapralos, M. Jenkin, and E. Milios. Acoustic Modeling Utilizing an Acoustic Version of Phonon Mapping. In Proc. of IEEE Workshop on HAVE, 2004.Google ScholarGoogle Scholar
  601. J. B. Keller. Geometrical theory of diffraction. Journal of the Optical Society of America, 52(2):116--130, 1962.Google ScholarGoogle ScholarCross RefCross Ref
  602. A. Krokstad, S. Strom, and S. Sorsdal. Calculating the acoustical room response by the use of a ray tracing technique. Journal of Sound and Vibration, 8(1):118--125, July 1968.Google ScholarGoogle ScholarCross RefCross Ref
  603. S. Laine, S. Siltanen, T. Lokki, and L. Savioja. Accelerated beam tracing algorithm. Applied Acoustic, 2008. to appear.Google ScholarGoogle Scholar
  604. C. Lauterbach, A. Chandak, and D. Manocha. Adaptive sampling for frustum-based sound propagation in complex and dynamic environments. In Proceedings of the 19th International Congress on Acoustics, 2007.Google ScholarGoogle Scholar
  605. C. Lauterbach, A. Chandak, and D. Manocha. Interactive sound propagation in dynamic scenes using frustum tracing. IEEE Trans. on Visualization and Computer Graphics, 13(6):1672--1679, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  606. C. Lauterbach, S.-E. Yoon, M. Tang, and D. Manocha. ReduceM: Interactive and Memory Efficient Ray Tracing of Large Models. In Proc. of the Eurographics Symposium on Rendering, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  607. C. Lauterbach, S.-E. Yoon, D. Tuft, and D. Manocha. RT-DEFORM: Interactive Ray Tracing of Dynamic Scenes using BVHs. IEEE Symposium on Interactive Ray Tracing, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  608. R. B. Loftin. Multisensory perception: Beyond the visual in visualization. Computing in Science and Engineering, 05(4):56--58, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  609. F. Michel, E. Deines, M. Hering-Bertram, C. Garth, and H. Hagen. Listener-based Analysis of Surface Importance for Acoustic Metrics. IEEE Transactions on Visualization and Computer Graphics, 13(6):1680--1687, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  610. R. Overbeck, R. Ramamoorthi, and W. R. Mark. A Real-time Beam Tracer with Application to Exact Soft Shadows. In Eurographics Symposium on Rendering, Jun 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  611. A. Rajkumar, B. F. Naylor, F. Feisullin, and L. Rogers. Predicting RF coverage in large environments using ray-beam tracing and partitioning tree represented geometry. Wirel. Netw., 2(2):143--154, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  612. A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray tracing algorithm. ACM Trans. Graph., 24(3):1176--1185, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  613. C. Ronchi, R. Iacono, and P. Paolucci. The "Cubed Sphere": A New Method for the Solution of Partial Differential Equations in Spherical Geometry. Journal of Computational Physics, 124:93--114(22), 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  614. J. Sandvad. Dynamic aspects of auditory virtual environment. In Audio Engineering Society 100th Convention preprints, page preprint no. 4246, April 1996.Google ScholarGoogle Scholar
  615. L. Savioja, J. Huopaniemi, T. Lokki, and R. Väänänen. Creating interactive virtual acoustic environments. Journal of the Audio Engineering Society (JAES), 47(9):675--705, September 1999.Google ScholarGoogle Scholar
  616. M. Shinya, T. Takahashi, and S. Naito. Principles and applications of pencil tracing. Proc. of ACM SIGGRAPH, 21(4):45--54, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  617. K. Shoemake. Plücker coordinate tutorial. Ray Tracing News, 11(1), 1998.Google ScholarGoogle Scholar
  618. S. Siltanen, T. Lokki, S. Kiminki, and L. Savioja. The room acoustic rendering equation. The Journal of the Acoustical Society of America, 122(3):1624--1635, September 2007.Google ScholarGoogle ScholarCross RefCross Ref
  619. S. Smith. Auditory representation of scientific data. In Focus on Scientific Visualization, pages 337--346, London, UK, 1993. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  620. M. Taylor, C. Lauterbach, A. Chandak, and D. Manocha. Edge Diffraction in Frustum Tracing. Technical report, University of North Carolina at Chapel Hill, 2008.Google ScholarGoogle Scholar
  621. N. Tsingos. A versatile software architecture for virtual audio simulations. In International Conference on Auditory Display (ICAD), Espoo, Finland, 2001.Google ScholarGoogle Scholar
  622. N. Tsingos, C. Dachsbacher, S. Lefebvre, and M. Dellepiane. Instant sound scattering. In Proceedings of the Eurographics Symposium on Rendering, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  623. N. Tsingos, T. Funkhouser, A. Ngan, and I. Carlbom. Modeling acoustics in virtual environments using the uniform theory of diffraction. In Proc. of ACM SIGGRAPH, pages 545--552, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  624. N. Tsingos, E. Gallo, and G. Drettakis. Perceptual audio rendering of complex virtual environments. ACM Trans. Graph., 23(3):249--258, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  625. I. Wald, W. Mark, J. Gunther, S. Boulos, T. Ize, W. Hunt, S. Parker, and P. Shirley. State of the Art in Ray Tracing Dynamic Scenes. Eurographics State of the Art Reports, 2007.Google ScholarGoogle Scholar
  626. M. Wand and W. Straßer. Multi-resolution sound rendering. In SPBG'04 Symposium on Point - Based Graphics 2004, pages 3--11, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  627. J. Warnock. A hidden-surface algorithm for computer generated half-tone pictures. Technical Report TR 4--15, NTIS AD-753 671, Department of Computer Science, University of Utah, 1969.Google ScholarGoogle Scholar
  628. E. Wenzel, J. Miller, and J. Abel. A software-based system for interactive sound synthesis. In International Conference on Auditory Display (ICAD), Atlanta, GA, April 2000.Google ScholarGoogle Scholar
  629. S.-E. Yoon, S. Curtis, and D. Manocha. Ray Tracing Dynamic Scenes using Selective Restructuring. In Proc. of the Eurographics Symposium on Rendering, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  630. J. B. Allen and D. A. Berkley, "Image method for efficiently simulating small-room acoustics," The Journal of the Acoustical Society of America, vol. 65, no. 4, pp. 943--950, April 1979.Google ScholarGoogle ScholarCross RefCross Ref
  631. T. Funkhouser, I. Carlbom, G. Elko, G. Pingali, M. Sondhi, and J. West, "A beam tracing approach to acoustic modeling for interactive virtual environments," in SIGGRAPH '98: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, New York, NY, USA, 1998, pp. 21--32, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  632. C. Lauterbach, A. Chandak, and D. Manocha, "Interactive sound propagation in dynamic scenes using frustum tracing," IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1672--1679, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  633. M. Hodgson, "Evidence of diffuse surface reflections in rooms," The Journal of the Acoustical Society of America, vol. 89, no. 2, pp. 765--771, February 1991.Google ScholarGoogle ScholarCross RefCross Ref
  634. N. Tsingos, T. Funkhouser, A. Ngan, and I. Carlbom, "Modeling acoustics in virtual environments using the uniform theory of diffraction," in SIGGRAPH 2001, Computer Graphics Proceedings, 2001, pp. 545--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  635. U. P. Svensson, R. I. Fred, and J. Vanderkooy, "An analytic secondary source model of edge diffraction impulse responses," Acoustical Society of America Journal, vol. 106, pp. 2331--2344, Nov. 1999.Google ScholarGoogle ScholarCross RefCross Ref
  636. V. Pulkki, T. Lokki, and L. Savioja, "Implementation and visualization of edge diffraction with image-source method," in The 112th Audio Engineering Society (AES) Convention, 2002, pp. preprint no. 5603+.Google ScholarGoogle Scholar
  637. P. T. Calamia and U. P. Svensson, "Edge subdivision for fast diffraction calculations," in Proc. 2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2005), October 2005, pp. 187--190.Google ScholarGoogle ScholarCross RefCross Ref
  638. R. Kouyoumjian and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," IEEE, Proceedings, vol. 62, Nov. 1974, p. 1448--1461., 1974.Google ScholarGoogle ScholarCross RefCross Ref
  639. N. Tsingos, I. Carlbom, G. Elbo, R. Kubli, and T. Funkhouser, "Validation of acoustical simulations in the "bell labs box"," IEEE Computer Graphics and Applications, vol. 22, no. 4, pp. 28--37, June 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  640. S. Van Duyne and J. O. Smith, "The 2-d digital waveguide mesh," in Applications of Signal Processing to Audio and Acoustics, 1993. Final Program and Paper Summaries., 1993 IEEE Workshop on, 1993, pp. 177--180.Google ScholarGoogle Scholar
  641. D. Botteldooren, "Acoustical finite-difference time-domain simulation in a quasi-cartesian grid," The Journal of the Acoustical Society of America, vol. 95, no. 5, pp. 2313--2319, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  642. N. Raghuvanshi, N. Galoppo, and M. C. Lin, "Accelerated wave-based acoustics simulation," in Symposium on Solid and Physical Modeling, 2008, pp. 91--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  643. J. Borish, "Extension of the image model to arbitrary polyhedra," The Journal of the Acoustical Society of America, vol. 75, pp. 1827--1836, June 1984.Google ScholarGoogle ScholarCross RefCross Ref
  644. A. Krokstad, S. Strom, and S. Sørsdal, "Calculating the acoustical room response by the use of a ray tracing technique," in Journal of Sound and Vibration, 1968, vol. 8, pp. 118--125.Google ScholarGoogle ScholarCross RefCross Ref
  645. M. A. Biot and I. Tolstoy, "Formulation of wave propagation in infinite media by normal coordinates with an application to diffraction," Journal of the Acoustical Society of America, vol. 29, no. 3, pp. 381--391, March 1957.Google ScholarGoogle ScholarCross RefCross Ref
  646. H. Medwin, "Shadowing by finite noise barriers," Journal of the Acoustical Society of America, vol. 69, no. 4, pp. 1060--1064, April 1981.Google ScholarGoogle ScholarCross RefCross Ref
  647. P. T. Calamia and U. P. Svensson, "Fast time-domain edge-diffraction calculations for interactive acoustic simulations," EURASIP J. Appl. Signal Process., vol. 2007, no. 1, pp. 186--186, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  648. F. Antonacci, M. Foco, A. Sarti, and S. Tubaro, "Fast modeling of acoustic reflections and diffraction in complex environments using visibility diagrams," in Proceedings of 12th European Signal Processing Conference (EUSIPCO '04), September 2004, pp. 1773--1776.Google ScholarGoogle Scholar
  649. A. Chandak, C. Lauterbach, M. Taylor, Z. Ren, and D. Manocha, "Ad-frustum: Adaptive frustum tracing for interactive sound propagation," IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 6, pp. 1707--1722, December 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  650. M. Taylor, A. Chandak, L. Antani, and D. Manocha, "Resound: Interactive sound rendering for dynamic virtual environments," Tech. Rep., University of Chapel Hill, 2009.Google ScholarGoogle Scholar
  651. A. Chandak, L. Antani, M. Taylor, and D. Manocha, "Fastv: From-point visibility culling on complex models," Tech. Rep., University of Chapel Hill, 2009.Google ScholarGoogle Scholar
  652. M. Taylor and D. Manocha, "Fast accurate diffraction paths with frustum tracing," Tech. Rep., University of Chapel Hill, 2009.Google ScholarGoogle Scholar
  653. Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and John Manferdelli, "High performance discrete fourier transforms on graphics processors," in SC '08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, Piscataway, NJ, USA, 2008, pp. 1--12, IEEE Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  654. U. R. Krockstadt, "Calculating the acoustical room response by the use of a ray tracing technique," Journal of Sound Vibration, 1968.Google ScholarGoogle ScholarCross RefCross Ref
  655. J. B. Allen and D. A. Berkley, "Image method for efficiently simulating small-room acoustics," J. Acoust. Soc. Am, vol. 65, no. 4, pp. 943--950, 1979.Google ScholarGoogle ScholarCross RefCross Ref
  656. J. H. Rindel, "The use of computer modeling in room acoustics," Journal of Vibroengineering, vol. 3, no. 4, pp. 219--224, 2000.Google ScholarGoogle Scholar
  657. Thomas Funkhouser, Nicolas Tsingos, Ingrid Carlbom, Gary Elko, Mohan Sondhi, James E. West, Gopal Pingali, Patrick Min, and Addy Ngan, "A beam tracing method for interactive architectural acoustics," The Journal of the Acoustical Society of America, vol. 115, no. 2, pp. 739--756, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  658. F. Antonacci, M. Foco, A. Sarti, and S. Tubaro, "Real time modeling of acoustic propagation in complex environments," Proceedings of 7th International Conference on Digital Audio Effects, pp. 274--279, 2004.Google ScholarGoogle Scholar
  659. Anish Chandak, Christian Lauterbach, Micah Taylor, Zhimin Ren, and Dinesh Manocha, "Ad-frustum: Adaptive frustum tracing for interactive sound propagation," IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 6, pp. 1707--1722, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  660. M. Bertram, E. Deines, J. Mohring, J. Jegorovs, and H. Hagen, "Phonon tracing for auralization and visualization of sound," in IEEE Visualization 2005, 2005.Google ScholarGoogle Scholar
  661. Nicolas Tsingos, Simulating High Quality Dynamic Virtual Sound Fields For Interactive Graphics Applications, Ph.D. thesis, Universite Joseph Fourier Grenoble I, December 1998.Google ScholarGoogle Scholar
  662. Murray Hodgson and Eva M. Nosal, "Experimental evaluation of radiosity for room sound-field prediction," The Journal of the Acoustical Society of America, vol. 120, no. 2, pp. 808--819, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  663. Nicolas Tsingos, Thomas Funkhouser, Addy Ngan, and Ingrid Carlbom, "Modeling acoustics in virtual environments using the uniform theory of diffraction," in Computer Graphics (SIGGRAPH 2001), August 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  664. Paul T. Calamia and Peter U. Svensson, "Fast time-domain edge-diffraction calculations for interactive acoustic simulations," EURASIP Journal on Advances in Signal Processing, vol. 2007, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  665. Micah Taylor, Anish Chandak, Zhimin Ren, Christian Lauterbach, and Dinesh Manocha, "Interactive edge diffraction for sound propagation in complex virtual environments," Tech. Rep., Department of Computer Science, UNC Chapel Hill, 2008.Google ScholarGoogle Scholar
  666. Mendel Kleiner, Bengt-Inge Dalenbäck, and Peter Svensson, "Auralization - an overview," JAES, vol. 41, pp. 861--875, 1993.Google ScholarGoogle Scholar
  667. S. Van Duyne and J. O. Smith, "The 2-d digital waveguide mesh," in Applications of Signal Processing to Audio and Acoustics, 1993. Final Program and Paper Summaries., 1993 IEEE Workshop on, 1993, pp. 177--180.Google ScholarGoogle Scholar
  668. Matti Karjalainen and Cumhur Erkut, "Digital waveguides versus finite difference structures: equivalence and mixed modeling," EURASIP J. Appl. Signal Process., vol. 2004, no. 1, pp. 978--989, January 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  669. L. Savioja, Modeling Techniques for Virtual Acoustics, Doctoral thesis, Helsinki University of Technology, Telecommunications Software and Multimedia Laboratory, Report TML-A3, 1999.Google ScholarGoogle Scholar
  670. D. Murphy, A. Kelloniemi, J. Mullen, and S. Shelley, "Acoustic modeling using the digital waveguide mesh," Signal Processing Magazine, IEEE, vol. 24, no. 2, pp. 55--66, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  671. D. Botteldooren, "Finite-difference time-domain simulation of low-frequency room acoustic problems," Acoustical Society of America Journal, vol. 98, pp. 3302--3308, December 1995.Google ScholarGoogle ScholarCross RefCross Ref
  672. Shinichi Sakamoto, Takuma Seimiya, and Hideki Tachibana, "Visualization of sound reflection and diffraction using finite difference time domain method," Acoustical Science and Technology, vol. 23, no. 1, pp. 34--39, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  673. S. Sakamoto, T. Yokota, and H. Tachibana, "Numerical sound field analysis in halls using the finite difference time domain method," in RADS 2004, Awaji, Japan, 2004.Google ScholarGoogle Scholar
  674. R. Rabenstein, S. Petrausch, A. Sarti, G. De Sanctis, C. Erkut, and M. Karjalainen, "Block-based physical modeling for digital sound synthesis," Signal Processing Magazine, IEEE, vol. 24, no. 2, pp. 42--54, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  675. Allen Taflove and Susan C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition, Artech House Publishers, June 2005.Google ScholarGoogle Scholar
  676. Charles Van Loan, Computational Frameworks for the Fast Fourier Transform, Society for Industrial Mathematics, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  677. Y. S. Rickard, N. K. Georgieva, and Wei-Ping Huang, "Application and optimization of pml abc for the 3-d wave equation in the time domain," Antennas and Propagation, IEEE Transactions on, vol. 51, no. 2, pp. 286--295, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  678. Nikunj Raghuvanshi, Nico Galoppo, and Ming C. Lin, "Accelerated wave-based acoustics simulation," in SPM '08: Proceedings of the 2008 ACM symposium on Solid and physical modeling, New York, NY, USA, 2008, pp. 91--102, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  679. Nikunj Raghuvanshi, Rahul Narain, and Ming C. Lin, "Efficient and accurate sound propagation using adaptive rectangular decomposition," IEEE Transactions on Visualization and Computer Graphics, vol. 99, no. 1, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  680. Domain decomposition method. http://www.ddm.org.Google ScholarGoogle Scholar
  681. Soundscapes in half-life 2, valve corporation. http://developer.valvesoftware.com/wiki/Soundscapes, 2008.Google ScholarGoogle Scholar
  682. J. B. Allen and D. A. Berkley. Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am, 65(4):943--950, 1979.Google ScholarGoogle ScholarCross RefCross Ref
  683. F. Antonacci, M. Foco, A. Sarti, and S. Tubaro. Real time modeling of acoustic propagation in complex environments. Proceedings of 7th International Conference on Digital Audio Effects, pages 274--279, 2004.Google ScholarGoogle Scholar
  684. M. Bertram, E. Deines, J. Mohring, J. Jegorovs, and H. Hagen. Phonon tracing for auralization and visualization of sound. In IEEE Visualization 2005, 2005.Google ScholarGoogle Scholar
  685. N. Bonneel, G. Drettakis, N. Tsingos, I. V. Delmon, and D. James. Fast modal sounds with scalable frequency-domain synthesis, August 2008.Google ScholarGoogle Scholar
  686. D. Botteldooren. Acoustical finite-difference time-domain simulation in a quasi-cartesian grid. The Journal of the Acoustical Society of America, 95(5):2313--2319, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  687. D. Botteldooren. Finite-difference time-domain simulation of low-frequency room acoustic problems. Acoustical Society of America Journal, 98:3302--3308, December 1995.Google ScholarGoogle ScholarCross RefCross Ref
  688. J. P. Boyd. Chebyshev and Fourier Spectral Methods: Second Revised Edition. Dover Publications, December 2001.Google ScholarGoogle Scholar
  689. P. T. Calamia and P. U. Svensson. Fast time-domain edge-diffraction calculations for interactive acoustic simulations. EURASIP Journal on Advances in Signal Processing, 2007, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  690. C. A. de Moura. Parallel numerical methods for differential equations - a survey.Google ScholarGoogle Scholar
  691. E. Deines, F. Michel, M. Bertram, H. Hagen, and G. Nielson. Visualizing the phonon map. In Eurovis, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  692. Y. Dobashi, T. Yamamoto, and T. Nishita. Real-time rendering of aerodynamic sound using sound textures based on computational fluid dynamics. ACM Trans. Graph., 22(3):732--740, July 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  693. Durlach. Virtual reality scientific and technological challenges. Technical report, National Research Council, 1995.Google ScholarGoogle Scholar
  694. M. Frigo and S. G. Johnson. The design and implementation of fftw3. Proc. IEEE, 93(2):216--231, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  695. T. Funkhouser, N. Tsingos, I. Carlbom, G. Elko, M. Sondhi, J. E. West, G. Pingali, P. Min, and A. Ngan. A beam tracing method for interactive architectural acoustics. The Journal of the Acoustical Society of America, 115(2):739--756, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  696. N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli. High performance discrete fourier transforms on graphics processors. In SC '08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pages 1--12, Piscataway, NJ, USA, 2008. IEEE Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  697. M. Hodgson and E. M. Nosal. Experimental evaluation of radiosity for room sound-field prediction. The Journal of the Acoustical Society of America, 120(2):808--819, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  698. D. L. James, J. Barbic, and D. K. Pai. Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Transactions on Graphics, 25(3):987--995, July 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  699. M. Karjalainen and C. Erkut. Digital waveguides versus finite difference structures: equivalence and mixed modeling. EURASIP J. Appl. Signal Process., 2004(1):978--989, January 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  700. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders. Fundamentals of Acoustics. Wiley, December 1999.Google ScholarGoogle Scholar
  701. M. Kleiner, B.-I. Dalenbäck, and P. Svensson. Auralization - an overview. JAES, 41:861--875, 1993.Google ScholarGoogle Scholar
  702. U. Krockstadt. Calculating the acoustical room response by the use of a ray tracing technique. Journal of Sound Vibration, 1968.Google ScholarGoogle ScholarCross RefCross Ref
  703. H. Kuttruff. Room Acoustics. Taylor&Francis, October 2000.Google ScholarGoogle Scholar
  704. Q. H. Liu. The pstd algorithm: A time-domain method combining the pseudospectral technique and perfectly matched layers. The Journal of the Acoustical Society of America, 101(5):3182, 1997.Google ScholarGoogle Scholar
  705. T. Lokki. Physically-based Auralization. PhD thesis, Helsinki University of Technology, 2002.Google ScholarGoogle Scholar
  706. M. Monks, B. M. Oh, and J. Dorsey. Audioptimization: Goal-based acoustic design. IEEE Computer Graphics and Applications, 20(3):76--91, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  707. D. Murphy, A. Kelloniemi, J. Mullen, and S. Shelley. Acoustic modeling using the digital waveguide mesh. Signal Processing Magazine, IEEE, 24(2):55--66, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  708. J. F. O'Brien, C. Shen, and C. M. Gatchalian. Synthesizing sounds from rigid-body simulations. In SCA '02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 175--181, New York, NY, USA, 2002. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  709. R. Petrausch and S. Rabenstein. Simulation of room acoustics via block-based physical modeling with the functional transformation method. Applications of Signal Processing to Audio and Acoustics, 2005. IEEE Workshop on, pages 195--198, 16--19 Oct. 2005.Google ScholarGoogle Scholar
  710. A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential Equations. Oxford University Press, 1999.Google ScholarGoogle Scholar
  711. R. Rabenstein, S. Petrausch, A. Sarti, G. De Sanctis, C. Erkut, and M. Karjalainen. Block-based physical modeling for digital sound synthesis. Signal Processing Magazine, IEEE, 24(2):42--54, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  712. N. Raghuvanshi and M. C. Lin. Interactive sound synthesis for large scale environments. In SI3D '06: Proceedings of the 2006 symposium on Interactive 3D graphics and games, pages 101--108, New York, NY, USA, 2006. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  713. Y. S. Rickard, N. K. Georgieva, and W.-P. Huang. Application and optimization of pml abc for the 3-d wave equation in the time domain. Antennas and Propagation, IEEE Transactions on, 51(2):286--295, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  714. J. H. Rindel. The use of computer modeling in room acoustics.Google ScholarGoogle Scholar
  715. H. Sabine. Room acoustics. Audio, Transactions of the IRE Professional Group on, 1(4):4--12, 1953.Google ScholarGoogle ScholarCross RefCross Ref
  716. S. Sakamoto, T. Seimiya, and H. Tachibana. Visualization of sound reflection and diffraction using finite difference time domain method. Acoustical Science and Technology, 23(1):34--39, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  717. S. Sakamoto, A. Ushiyama, and H. Nagatomo. Numerical analysis of sound propagation in rooms using the finite difference time domain method. The Journal of the Acoustical Society of America, 120(5):3008, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  718. S. Sakamoto, T. Yokota, and H. Tachibana. Numerical sound field analysis in halls using the finite difference time domain method. In RADS 2004, Awaji, Japan, 2004.Google ScholarGoogle Scholar
  719. L. Savioja. Modeling Techniques for Virtual Acoustics. Doctoral thesis, Helsinki University of Technology, Telecommunications Software and Multimedia Laboratory, Report TML-A3, 1999.Google ScholarGoogle Scholar
  720. K. L. Shlager and J. B. Schneider. A selective survey of the finite-difference time-domain literature. Antennas and Propagation Magazine, IEEE, 37(4):39--57, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  721. S. Siltanen. Geometry reduction in room acoustics modeling. Master's thesis, Helsinki University of Technology, 2005.Google ScholarGoogle Scholar
  722. A. Taflove and S. C. Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition. Artech House Publishers, June 2005.Google ScholarGoogle Scholar
  723. T. Takala and J. Hahn. Sound rendering. SIGGRAPH Comput. Graph., 26(2):211--220, July 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  724. A. Toselli and O. Widlund. Domain Decomposition Methods. Springer, 1 edition, November 2004.Google ScholarGoogle Scholar
  725. N. Tsingos. Simulating High Quality Dynamic Virtual Sound Fields For Interactive Graphics Applications. PhD thesis, Universite Joseph Fourier Grenoble I, December 1998.Google ScholarGoogle Scholar
  726. N. Tsingos, C. Dachsbacher, S. Lefebvre, and M. Dellepiane. Instant sound scattering. In Rendering Techniques (Proceedings of the Eurographics Symposium on Rendering), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  727. N. Tsingos, T. Funkhouser, A. Ngan, and I. Carlbom. Modeling acoustics in virtual environments using the uniform theory of diffraction. In Computer Graphics (SIGGRAPH 2001), August 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  728. K. van den Doel, P. G. Kry, and D. K. Pai. Foleyautomatic: physically-based sound effects for interactive simulation and animation. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 537--544, New York, NY, USA, 2001. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  729. S. Van Duyne and J. O. Smith. The 2-d digital waveguide mesh. In Applications of Signal Processing to Audio and Acoustics, 1993. Final Program and Paper Summaries., 1993 IEEE Workshop on, pages 177--180, 1993.Google ScholarGoogle Scholar
  730. K. Yee. Numerical solution of inital boundary value problems involving maxwell's equations in isotropic media. Antennas and Propagation, IEEE Transactions on {legacy, pre - 1988}, 14(3):302--307, 1966.16Google ScholarGoogle Scholar

Index Terms

  1. Interactive sound rendering

                Recommendations

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in
                • Published in

                  cover image ACM Conferences
                  SIGGRAPH '09: ACM SIGGRAPH 2009 Courses
                  August 2009
                  4249 pages
                  ISBN:9781450379380
                  DOI:10.1145/1667239

                  Copyright © 2009 ACM

                  Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                  Publisher

                  Association for Computing Machinery

                  New York, NY, United States

                  Publication History

                  • Published: 3 August 2009

                  Permissions

                  Request permissions about this article.

                  Request Permissions

                  Check for updates

                  Qualifiers

                  • research-article

                  Acceptance Rates

                  Overall Acceptance Rate1,822of8,601submissions,21%

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader