skip to main content
research-article

Precomputed wave simulation for real-time sound propagation of dynamic sources in complex scenes

Published:26 July 2010Publication History
Skip Abstract Section

Abstract

We present a method for real-time sound propagation that captures all wave effects, including diffraction and reverberation, for multiple moving sources and a moving listener in a complex, static 3D scene. It performs an offline numerical simulation over the scene and then applies a novel technique to extract and compactly encode the perceptually salient information in the resulting acoustic responses. Each response is automatically broken into two phases: early reflections (ER) and late reverberation (LR), via a threshold on the temporal density of arriving wavefronts. The LR is simulated and stored in the frequency domain, once per room in the scene. The ER accounts for more detailed spatial variation, by recording a set of peak delays/amplitudes in the time domain and a residual frequency response sampled in octave frequency bands, at each source/receiver point pair in a 5D grid. An efficient run-time uses this precomputed representation to perform binaural sound rendering based on frequency-domain convolution. Our system demonstrates realistic, wave-based acoustic effects in real time, including diffraction low-passing behind obstructions, sound focusing, hollow reverberation in empty rooms, sound diffusion in fully-furnished rooms, and realistic late reverberation.

Skip Supplemental Material Section

Supplemental Material

tp094-10.mp4

References

  1. Antonacci, F., Foco, M., Sarti, A., and Tubaro, S. 2004. Real time modeling of acoustic propagation in complex environments. Proceedings of 7th International Conference on Digital Audio Effects, 274--279.Google ScholarGoogle Scholar
  2. Blauert, J. 1997. An introduction to binaural technology. In Binaural and Spatial Hearing in Real and Virtual Environments, R. Gilkey and T. R. Anderson, Eds. Lawrence Erlbaum, USA.Google ScholarGoogle Scholar
  3. Botteldooren, D. 1995. Finite-difference time-domain simulation of low-frequency room acoustic problems. Acoustical Society of America Journal 98 (December), 3302--3308.Google ScholarGoogle ScholarCross RefCross Ref
  4. Calamia, P. 2009. Advances in Edge-Diffraction Modeling for Virtual-Acoustic Simulations. PhD thesis, Princeton University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chandak, A., Lauterbach, C., Taylor, M., Ren, Z., and Manocha, D. 2008. Ad-frustum: Adaptive frustum tracing for interactive sound propagation. IEEE Transactions on Visualization and Computer Graphics 14, 6, 1707--1722. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Emerit, M., Faure, J., Guerin, A., Nicol, R., Pallone, G., Philippe, P., and Virette, D. 2007. Efficient binaural filtering in QMF domain for BRIR. In AES 122th Convention.Google ScholarGoogle Scholar
  7. Funkhouser, T., Tsingos, N., Carlbom, I., Elko, G., Sondhi, M., West, J. E., Pingali, G., Min, P., and Ngan, A. 2004. A beam tracing method for interactive architectural acoustics. The Journal of the Acoustical Society of America 115, 2, 739--756.Google ScholarGoogle ScholarCross RefCross Ref
  8. Gardner, W. G. 1998. Reverberation algorithms. In Applications of Digital Signal Processing to Audio and Acoustics, M. Kahrs and K. Brandenburg, Eds., 1 ed. Springer, 85--131.Google ScholarGoogle Scholar
  9. Halmrast, T. 2007. Coloration due to reflections. further investigations. In International Congress on Acoustics.Google ScholarGoogle Scholar
  10. Hartmann, W. M., and Wittenberg, A. 1996. On the externalization of sound images. The Journal of the Acoustical Society of America 99, 6 (June), 3678--3688.Google ScholarGoogle ScholarCross RefCross Ref
  11. James, D. L., Barbic, J., and Pai, D. K. 2006. Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Transactions on Graphics 25, 3 (July), 987--995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Jesteadt, W., Wier, C. C., and Green, D. M. 1977. Intensity discrimination as a function of frequency and sensation level. The Journal of the Acoustical Society of America 61, 1, 169--177.Google ScholarGoogle ScholarCross RefCross Ref
  13. Kinsler, L. E., Frey, A. R., Coppens, A. B., and Sanders, J. V. 2000. Fundamentals of acoustics, 4 ed. Wiley, December.Google ScholarGoogle Scholar
  14. Kuttruff, H. 2000. Room Acoustics. Taylor & Francis, October.Google ScholarGoogle Scholar
  15. Litovsky, R. Y., Colburn, S. H., Yost, W. A., and Guzman, S. J. 1999. The precedence effect. The Journal of the Acoustical Society of America 106, 4, 1633--1654.Google ScholarGoogle ScholarCross RefCross Ref
  16. Lokki, T. 2002. Physically-based Auralization. PhD thesis, Helsinki University of Technology.Google ScholarGoogle Scholar
  17. Masterson, C., Kearney, G., and Boland, F. 2009. Acoustic impulse response interpolation for multichannel systems using dynamic time warping. In 35th AES Conference on Audio for Games.Google ScholarGoogle Scholar
  18. Min, P., and Funkhouser, T. 2000. Priority-driven acoustic modeling for virtual environments. Computer Graphics Forum (September), 179--188.Google ScholarGoogle Scholar
  19. Pope, J., Creasey, D., and Chalmers, A. 1999. Realtime room acoustics using ambisonics. In The Proceedings of the AES 16th International Conference on Spatial Sound Reproduction, Audio Engineering Society, 427--435.Google ScholarGoogle Scholar
  20. Raghuvanshi, N., Narain, R., and Lin, M. C. 2009. Efficient and accurate sound propagation using adaptive rectangular decomposition. IEEE Transactions on Visualization and Computer Graphics 15, 5, 789--801. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Sakamoto, S., Ushiyama, A., and Nagatomo, H. 2006. Numerical analysis of sound propagation in rooms using the finite difference time domain method. The Journal of the Acoustical Society of America 120, 5, 3008.Google ScholarGoogle ScholarCross RefCross Ref
  22. Siltanen, S. 2005. Geometry Reduction in Room Acoustics Modeling. Master's thesis, Helsinki University of Technology.Google ScholarGoogle Scholar
  23. Stavrakis, E., Tsingos, N., and Calamia, P. 2008. Topological sound propagation with reverberation graphs. Acta Acustica/Acustica - the Journal of the European Acoustics Association (EAA).Google ScholarGoogle Scholar
  24. Svensson, U. P., Calamia, P., and Nakanishi, S. 2009. Frequency-domain edge diffraction for finite and infinite edges. In Acta Acustica/Acustica 95, 568--572.Google ScholarGoogle ScholarCross RefCross Ref
  25. Taylor, M. T., Chandak, A., Antani, L., and Manocha, D. 2009. Resound: interactive sound rendering for dynamic virtual environments. In MM '09: Proceedings of the seventeen ACM international conference on Multimedia, ACM, New York, NY, USA, 271--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Tsingos, N., Funkhouser, T., Ngan, A., and Carlbom, I. 2001. Modeling acoustics in virtual environments using the uniform theory of diffraction. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, 545--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Tsingos, N., Dachsbacher, C., Lefebvre, S., and Dellepiane, M. 2007. Instant sound scattering. In Rendering Techniques (Proceedings of the Eurographics Symposium on Rendering). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Tsingos, N. 2009. Pre-computing geometry-based reverberation effects for games. In 35th AES Conference on Audio for Games.Google ScholarGoogle Scholar

Index Terms

  1. Precomputed wave simulation for real-time sound propagation of dynamic sources in complex scenes

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 29, Issue 4
          July 2010
          942 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1778765
          Issue’s Table of Contents

          Copyright © 2010 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 26 July 2010
          Published in tog Volume 29, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader