skip to main content
research-article

Parallel Poisson disk sampling with spectrum analysis on surfaces

Published:15 December 2010Publication History
Skip Abstract Section

Abstract

The ability to place surface samples with Poisson disk distribution can benefit a variety of graphics applications. Such a distribution satisfies the blue noise property, i.e. lack of low frequency noise and structural bias in the Fourier power spectrum. While many techniques are available for sampling the plane, challenges remain for sampling arbitrary surfaces. In this paper, we present new methods for Poisson disk sampling with spectrum analysis on arbitrary manifold surfaces. Our first contribution is a parallel dart throwing algorithm that generates high-quality surface samples at interactive rates. It is flexible and can be extended to adaptive sampling given a user-specified radius field. Our second contribution is a new method for analyzing the spectral quality of surface samples. Using the spectral mesh basis derived from the discrete mesh Laplacian operator, we extend standard concepts in power spectrum analysis such as radial means and anisotropy to arbitrary manifold surfaces. This provides a way to directly evaluate the spectral distribution quality of surface samples without requiring mesh parameterization. Finally, we implement our Poisson disk sampling algorithm on the GPU, and demonstrate practical applications involving interactive sampling and texturing on arbitrary surfaces.

Skip Supplemental Material Section

Supplemental Material

References

  1. Alcantara, D. A., Sharf, A., Abbasinejad, F., Sengupta, S., Mitzenmacher, M., Owens, J. D., and Amenta, N. 2009. Real-time parallel hashing on the GPU. ACM Trans. Graph. 28, 5, 154:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alexa, M. 2002. Recent advances in mesh morphing. Comput. Graph. Forum 21, 2, 173--196.Google ScholarGoogle ScholarCross RefCross Ref
  3. Alliez, P., Meyer, M., and Desbrun, M. 2002. Interactive geometry remeshing. ACM Trans. Graph. 21, 3, 347--354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Balzer, M., Schlömer, T., and Deussen, O. 2009. Capacity-constrained point distributions: a variant of Lloyd's method. ACM Trans. Graph. 28, 3, 86:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cheslack-Postava, E., Wang, R., Akerlund, O., and Pellacini, F. 2008. Fast, realistic lighting and material design using nonlinear cut approximation. ACM Trans. Graph. 27, 5, 128:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cline, D., Jeschke, S., White, K., Razdan, A., and Wonka, P. 2009. Dart throwing on surfaces. Computer Graphics Forum 28, 4, 1217--1226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Transactions on Graphics 5, 1, 51--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Desbrun, M., Meyer, M., Schröder, P., and Barr, A. H. 2002. Discrete differential-geometry operators for triangulated 2-manifolds. In Visualization and Mathematics III, Springer-Verlag, 35--57.Google ScholarGoogle Scholar
  9. Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and Hart, J. C. 2006. Spectral surface quadrangulation. ACM Trans. Graph. 25, 3, 1057--1066. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dunbar, D., and Humphreys, G. 2006. A spatial data structure for fast Poisson-disk sample generation. ACM Trans. Graph. 25, 3, 503--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Dyer, R., Zhang, H., Moeller, T., and Clements, A. 2007. An investigation of the spectral robustness of mesh Laplacians. Tech. Rep. TR-2007-17, School of Computing Science, Simon Fraser University.Google ScholarGoogle Scholar
  12. Fu, Y., and Zhou, B. 2008. Direct sampling on surfaces for high quality remeshing. In SPM '08, 115--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Glanville, S. 2004. Texture bombing. GPU Gems.Google ScholarGoogle Scholar
  14. Grossman, J. P., and Dally, W. J. 1998. Point sample rendering. In Rendering Techniques, 181--192.Google ScholarGoogle Scholar
  15. Jensen, H. W., and Buhler, J. 2002. A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graph. 21, 3, 576--581. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jones, T. R. 2006. Efficient generation of Poisson-disk sampling patterns. Journal of Graphics Tools 11, 2, 27--36.Google ScholarGoogle ScholarCross RefCross Ref
  17. Karni, Z., and Gotsman, C. 2000. Spectral compression of mesh geometry. In SIGGRAPH '00, 279--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive Wang tiles for real-time blue noise. ACM Trans. Graph. 25, 3, 509--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lagae, A., and Dutré, P. 2005. A procedural object distribution function. ACM Trans. Graph. 24, 4, 1442--1461. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lagae, A., and Dutré, P. 2008. A comparison of methods for generating Poisson disk distributions. Computer Graphics Forum 27, 1, 114--129.Google ScholarGoogle ScholarCross RefCross Ref
  21. Levy, B. 2006. Laplace-Beltrami eigenfunctions towards an algorithm that "understands" geometry. In Proc. of SMI 2006, 13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Li, H., Lo, K.-Y., Leung, M.-K., and Fu, C.-W. 2008. Dual Poisson-disk tiling: An efficient method for distributing features on arbitrary surfaces. IEEE TVCG 14, 5, 982--998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Li, H., Wei, L.-Y., Sander, P., and Fu, C.-W. 2010. Anisotropic blue noise sampling. ACM Trans. Graph. 29, 5, to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lloyd, S. 1982. Least squares quantization in pcm. IEEE Transactions on Information Theory 28, 2, 129--137.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. McCool, M., and Fiume, E. 1992. Hierarchical Poisson disk sampling distributions. In Graphics Interface '92, 94--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Meier, B. J. 1996. Painterly rendering for animation. In SIGGRAPH '96, 477--484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. In SIGGRAPH '87, 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nehab, D., and Shilane, P. 2004. Stratified point sampling of 3D models. In Proc. of PBG, 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Ostromoukhov, V., Donohue, C., and Jodoin, P.-M. 2004. Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. 23, 3, 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Ostromoukhov, V. 2007. Sampling with polyominoes. ACM Trans. Graph. 26, 3, 78:1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Pastor, O. M., Freudenberg, B., and Strothotte, T. 2003. Real-time animated stippling. IEEE CG&A 23, 4, 62--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Praun, E., Hoppe, H., and Finkelstein, A. 1999. Robust mesh watermarking. In SIGGRAPH '99, 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Qu, L., and Meyer, G. W. 2006. Perceptually driven interactive geometry remeshing. In I3D '06, 199--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Ritschel, T., Engelhardt, T., Grosch, T., Seidel, H.-P., Kautz, J., and Dachsbacher, C. 2009. Micro-rendering for scalable, parallel final gathering. ACM Trans. Graph. 28, 5, 132:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sethian, J. A. 1995. A fast marching level set method for monotonically advancing fronts. In Proc. Nat. Acad. Sci, 1591--1595.Google ScholarGoogle Scholar
  36. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S. J., and Hoppe, H. 2005. Fast exact and approximate geodesics on meshes. ACM Trans. Graph. 24, 3, 553--560. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Turk, G. 1992. Re-tiling polygonal surfaces. In SIGGRAPH '92, 55--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Turk, G. 2001. Texture synthesis on surfaces. In SIGGRAPH '01, 347--354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Ulichney, R. 1987. Digital halftoning. MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Vallet, B., and Lévy, B. 2008. Spectral geometry processing with manifold harmonics. Comput. Graph. Forum 27, 2, 251--260.Google ScholarGoogle ScholarCross RefCross Ref
  41. Vanderhaeghe, D., Barla, P., Thollot, J., and Sillion, F. X. 2007. Dynamic point distribution for stroke-based rendering. In EGSR'07, 139--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wei, L.-Y., and Levoy, M. 2001. Texture synthesis over arbitrary manifold surfaces. In SIGGRAPH '01, 355--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Wei, L.-Y. 2008. Parallel Poisson disk sampling. ACM Trans. Graph. 27, 3, 20:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. White, K., Cline, D., and Egbert, P. 2007. Poisson disk point sets by hierarchical dart throwing. In Symposium on Interactive Ray Tracing, 129--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Yu, Q., Neyret, F., Bruneton, E., and Holzschuch, N. 2009. Scalable real-time animation of rivers. Comput. Graph. Forum 28, 2, 239--248.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 29, Issue 6
    December 2010
    480 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/1882261
    Issue’s Table of Contents

    Copyright © 2010 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 15 December 2010
    Published in tog Volume 29, Issue 6

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader