skip to main content
research-article

Spectral sampling of manifolds

Published:15 December 2010Publication History
Skip Abstract Section

Abstract

A central problem in computer graphics is finding optimal sampling conditions for a given surface representation. We propose a new method to solve this problem based on spectral analysis of manifolds which results in faithful reconstructions and high quality isotropic samplings, is efficient, out-of-core, feature sensitive, intuitive to control and simple to implement. We approach the problem in a novel way by utilizing results from spectral analysis, kernel methods, and matrix perturbation theory. Change in a manifold due to a single point is quantified by a local measure that limits the change in the Laplace-Beltrami spectrum of the manifold. Hence, we do not need to explicitly compute the spectrum or any global quantity, which makes our algorithms very efficient. Although our main focus is on sampling surfaces, the analysis and algorithms are general and can be applied for simplifying and resampling point clouds lying near a manifold of arbitrary dimension.

Skip Supplemental Material Section

Supplemental Material

References

  1. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva, C. T. 2001. Point set surfaces. In VIS '01, IEEE Computer Society, Washington, DC, USA, 21--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva, C. T. 2003. Computing and rendering point set surfaces. IEEE Transactions on Computer Graphics and Visualization 9, 1, 3--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Alliez, P., Meyer, M., and Desbrun, M. 2002. Interactive geometry remeshing. ACM Trans. Graph. 21, 3, 347--354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Alliez, P., Verdière, E. C. D., Devillers, O., and Isenburg, M. 2003. Isotropic surface remeshing. In SMI '03, IEEE Computer Society, Washington, DC, USA, 49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Belkin, M., and Niyogi, P. 2006. Convergence of laplacian eigenmaps. In NIPS, 129--136.Google ScholarGoogle Scholar
  6. Belkin, M., Sun, J., and Wang, Y. 2009. Constructing laplace operator from point clouds in rd. In SODA '09, 1031--1040. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cignoni, P., Rocchini, C., and Scopigno, R. 2001. Metro: Measuring error on simplified surfaces. Computer Graphics Forum 17, 2, 167--174.Google ScholarGoogle ScholarCross RefCross Ref
  8. Coifman, R. R., and Lafon, S. 2006. Diffusion maps. Applied and Computational Harmonic Analysis 21, 1, 5--30.Google ScholarGoogle ScholarCross RefCross Ref
  9. Dey, T. K., and Goswami, S. 2003. Tight cocone: a water-tight surface reconstructor. In SM '03, ACM, New York, NY, USA, 127--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dey, T. K., Rajan, P., and Wang, Y. 2010. Convergence, stability, and discrete approximation of laplace spectra. In SODA '10, ACM. to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Drineas, P., and Mahoney, M. W. 2005. Approximating a gram matrix for improved kernel-based learning. In Learning Theory, vol. 3559. Springer Berlin / Heidelberg, 323--337. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fu, Y., and Zhou, B. 2008. Direct sampling on surfaces for high quality remeshing. In SPM '08, ACM, New York, NY, USA, 115--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Garland, M., and Heckbert, P. S. 1997. Surface simplification using quadric error metrics. In SIGGRAPH 97: Proc. of the 24th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 209--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Grigor'yan, A. 1998. Estimates of heat kernels on riemannian manifolds. In Spectral Theory and Geometry. ICMS Instructional Conference, Cambridge Univ. Press, 140--225.Google ScholarGoogle Scholar
  15. Guennebaud, G., and Gross, M. 2007. Algebraic point set surfaces. ACM Trans. Graph. (SIGGRAPH 2007) 26, 3, 23.1--23.9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ham, J., Lee, D. D., Mika, S., and Schölkopf, B. 2004. A kernel view of the dimensionality reduction of manifolds. In ICML '04, ACM, New York, NY, USA, 47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kesavan, S. 1998. Listening to the shape of a drum. Resonance 3, 49--58. 10.1007/BF02841422.Google ScholarGoogle ScholarCross RefCross Ref
  18. Kitago, M., and Gopi, M. 2006. Efficient and prioritized point subsampling for csrbf compression. In Symp. on Point-based Graphics, Eurographics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lafon, S., and Lee, A. 2006. Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization. Pattern Analysis and Machine Intelligence, IEEE Transactions on 28, 9 (Sept.), 1393--1403. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lagae, A., and Dutré, P. 2008. A comparison of methods for generating Poisson disk distributions. Computer Graphics Forum 27, 1 (March), 114--129.Google ScholarGoogle ScholarCross RefCross Ref
  21. Lai, Y.-K., Zhou, Q.-Y., Hu, S.-M., Wallner, J., and Pottmann, H. 2007. Robust feature classification and editing. IEEE Trans. Vis. Comp. Graphics 13, 1, 34--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Levin, D. 2003. Mesh-independent surface interpolation. Geometric Modeling for Scientific Visualization, 37--49.Google ScholarGoogle Scholar
  23. Lévy, B. 2006. Laplace-beltrami eigenfunctions towards an algorithm that "understands" geometry. In Shape Modeling International, IEEE Computer Society, 13.Google ScholarGoogle Scholar
  24. Liu, R., Jain, V., and Zhang, H. 2006. Subsampling for efficient spectral mesh processing. In Computer Graphics International, 172--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Moghaddam, B., Gruber, A., Weiss, Y., and Avidan, S. 2008. Sparse regression as a sparse eigenvalue problem. In Information Theory and Applications Workshop, 2008, 121--127.Google ScholarGoogle Scholar
  26. Öztireli, C., Guennebaud, G., and Gross, M. 2009. Feature preserving point set surfaces based on non-linear kernel regression. In Eurographics 2009, 493--501.Google ScholarGoogle Scholar
  27. Öztireli, C., Alexa, M., and Gross, M. 2010. Spectral sampling of manifolds: Extended version. Tech. Rep. 683, ETH Zürich.Google ScholarGoogle Scholar
  28. Pauly, M., Gross, M., and Kobbelt, L. P. 2002. Efficient simplification of point-sampled surfaces. In VIS '02, IEEE Computer Society, Washington, DC, USA, 163--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Reuter, M., Wolter, F.-E., and Peinecke, N. 2006. Laplace-beltrami spectra as "shape-dna" of surfaces and solids. Computer-Aided Design 38, 4, 342--366. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rustamov, R. M. 2007. Laplace-beltrami eigenfunctions for deformation invariant shape representation. In SGP07, Eurographics Association, Barcelona, Spain, A. Belyaev and M. Garland, Eds., 225--233. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Schölkopf, B., Smola, A., and Müller, K.-R. 1998. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 5, 1299--1319. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Schreiner, J., Scheidegger, C., Fleishman, S., and Silva, C. 2006. Direct (re)meshing for efficient surface processing. Computer Graphics Forum (Eurographics 2006) 25, 3, 527--536.Google ScholarGoogle Scholar
  33. Sun, J., Ovsjanikov, M., and Guibas, L. J. 2009. A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28, 5, 1383--1392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Taubin, G. 1995. A signal processing approach to fair surface design. In SIGGRAPH 95: Proc. of the 22nd annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, 351--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Ulichney, R. 1987. Digital halftoning. MIT Press, Cambridge, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Valette, S., Chassery, J. M., and Prost, R. 2008. Generic remeshing of 3d triangular meshes with metric-dependent discrete voronoi diagrams. IEEE Transactions on Visualization and Computer Graphics 14, 369--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wardetzky, M., Mathur, S., Kälberer, F., and Grinspun, E. 2007. Discrete laplace operators: no free lunch. In SGP '07, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 33--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Witkin, A., and Heckbert, P. S. 1994. Using particles to sample and control implicit surfaces. In 21st annual conference on Computer graphics and interactive techniques, ACM Press, 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Yan, D.-M., Lévy, B., Liu, Y., Sun, F., and Wang, W. 2009. Isotropic remeshing with fast and exact computation of restricted voronoi diagram. Comput. Graph. Forum (Symp. on Geometry Processing 2009) 28, 5, 1445--1455. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Zhang, H., van Kaick, O., and Dyer, R. 2007. Spectral methods for mesh processing and analysis. In Eurographics State-of-the-art Report, 1--22.Google ScholarGoogle Scholar

Index Terms

  1. Spectral sampling of manifolds

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 29, Issue 6
          December 2010
          480 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1882261
          Issue’s Table of Contents

          Copyright © 2010 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 15 December 2010
          Published in tog Volume 29, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader