
- 1.Agarwal, P.K. Partitioning arrangements of lines 11: Applications, Disc. Comput. Geom., 5 (1990), 533-573.]]Google Scholar
Digital Library
- 2.Agarwal, P.K. Ray shooting and other applications o/ spanning trees with low stabbing number, SIAM J. Cornput., 22 (1992), 540-570.]] Google Scholar
Digital Library
- 3.Agarwal, P.K., Aronov, B. Counting facets and incidences, Disc. Comput. Geom., 7 (1992), 359-369.]]Google Scholar
Digital Library
- 4.Agarwal, P.K., Matou#ek, J. Ray shooting and parametric search, SIAM J. Comput., 22 (1993), 794-806.]] Google Scholar
Digital Library
- 5.Agarwal, P.K., Matou#ek, J. Range searching with semialgebraic sets, Disc. Comput. Geom. (1994), in press.]]Google Scholar
- 6.Agarwal, P.K., Sharir, M. Application of a new space partitioning technique, Disc. Comput. Geom., 9 (1993), 11-38.]]Google Scholar
Digital Library
- 7.Agarwal, P.K., Sharir, M., Shot, P. Sharp upper and lower bounds on the length of general Davenport- Schinzel sequences, J. Combin. Theory Ser. A, 52 (1989), 228-274.]] Google Scholar
Digital Library
- 8.Agarwal, P.K., Sharir, M., Toledo, S. Applications of parametric searching in geometric optimization, Proc. 3rd ACM-SIAM Syrup. Disc. Alg. (1992), 72-82.]] Google Scholar
Digital Library
- 9.Agarwal, P.K., Sharir, M., Toledo, S. An efficient multi-dimensional searching technique and its applications, Tech. Rep. CS-1993-20, Duke University, 1993."]] Google Scholar
Digital Library
- 10.Aggarwal, A., Chazelle, B., Guibaz, L.J., O'Dfinlaing, C., Yap, C.K. Parallel computational geometry, Algorithmica, 3 (1988), 293-327.]]Google Scholar
Digital Library
- 11.Ajtai, M., Megiddo, N. A deterministic Poly(loglog N)-time N-processor algorithm .for linear programming in fixed dimension, Proc. 24th Ann. ACM Syrup. Theory Comput. (1992), 327-338.]] Google Scholar
Digital Library
- 12.Alon, N., Babai, L., Itai, A. A fast and simple randomized algorithm/or the maximal independent set problem, J. Algorithms, 7 (1986), 567-583.]] Google Scholar
Digital Library
- 13.Alon, N., B~r~ny, I., Fiiredi, Z., Kleitman, D. Point selections and weak e-nets for convex hulls, Combinatorics, Probability and Computing, 3 (1992), 189-200.]]Google Scholar
Cross Ref
- 14.Alon. N., Coldrelch. O., Hastad, J., Pera}ta, R. Simple constructions of almost k-wise independent random variables, Random Structures & Algorithms, 3 (1992), 289-304.]]Google Scholar
- 15.Alon, N., Spencer, J.H. The Probabilistic Method, John Wiley & Sons, 1992.]]Google Scholar
- 16.Arkin, E.M., Chew, L. P., Huttenlocher, D. P., Kedem, K., Mitchell, J.S.B. An efficiently computable metric for comparing polygonal shapes Proc. 1st ACM-SIAM Symp. Disc. Alg. (1990), 129-137.]] Google Scholar
Digital Library
- 17.Aronov, B., Matou#ek, J., Sharir, M. On the sum of squares of cell complexities in hyperplane arrangements, Proc. 7th Ann. Syrup. Comput. Geom. (1991), 307-313. To appear in J. Combin. Theory Ser. A.]] Google Scholar
Digital Library
- 18.Aronov, B., Pellegrini, M., Sharir, M. On the zone of a surface in a hyperplane arrangement, Disc. Comput. Geom., 9 (1993), 177-186.]]Google Scholar
Digital Library
- 19.Aronov, B., Sharir, M. Triangles in space or building (and analyzing) castles in the air, Combinatorica, 10 (1990), 137-173.]]Google Scholar
Cross Ref
- 20.Aronov, B., Sharir, M. Castles in the air revisited, Proc. 8th Ann. ACM Syrup. Comput. Geom. (1992), 146-156. To appear in Disc. Comput. Geom.]] Google Scholar
Digital Library
- 21.Aronov, B., Sharir, M. The union of convex polyhedra in three dimensions, Proc. 34th Ann. IEEE Symp. Foundat. Comput. Sci. (1993), 518-527.]]Google Scholar
Digital Library
- 22.Aurenhammer, F. Power diagrams: properties, algorithms and applications, SIAM J. Comput., 16 (1987), 78-96.]] Google Scholar
Digital Library
- 23.Aurenhamm#r, F. Voronoi diagrams: a survey of a fundamental geometric data structure, ACM Comput. Surv., 23 (1991), 345-405.]] Google Scholar
Digital Library
- 24.Bajaj, C.L., Dey, T.K. Convex decompositions of poly. hedra and robustness, SIAM J. Comput., 21 (1992), 339-364.]] Google Scholar
Digital Library
- 25.Basu, S., Pollack, R., Roy, M.-F. On the combinato. rial and algebraic complexity of quantifier elimination, manuscript, 1994.]]Google Scholar
- 26.Basu, S., Pollack, R., Roy, M.-F. A new algorithm to find a point in every cell defined by a family of polynomials, in "Quantifier Elimination and Cylindrical Algebraic Decomposition", ed. B. Caviness and J. Johnson, Springer-Verlag, to appear.]]Google Scholar
- 27.Basu, S., Pollack, R., Roy, M.-F. On the number of cells defined by a family of polynomials on a variety, Algorithmic foundations of robotics, AK Peters, ed. K.Y. Goldberg, D. H alperin, J.-C. Latombe, R.H. Wilson. To appear.]] Google Scholar
Digital Library
- 28.Beck, J. An algorithmic approach to the Lovdsz local lemma. L Random Structures & Algorithms, 2 (1991), 343-365.]]Google Scholar
Digital Library
- 29.Ben-Or, M. Lower bounds for algebraic computation trees, Proc. 15th Ann. ACM Syrup. Theory Comput. (1983), 80-86.]] Google Scholar
Digital Library
- 30.Ben-Or, M., Kozen, D., Reif, J. The complexity of elementary algebra and geometry, J. Comput. Syst. Sci., 32 (# 986), 251-264.]] Google Scholar
Digital Library
- 31.Bentley, J.L., Ottmann, T.A. Algorithms for reporting and counting geometric intersections, IEEE Trans. Comput., C-28 (1979), 643-647.]]Google Scholar
Digital Library
- 32.Berger, B., Rompel, J. Simulating (logn)~-wise independence in NC, J. ACM, 38 (1991), 1028-1046.]] Google Scholar
Digital Library
- 33.Berger, B., Rompel, J., Shor, P. Efficient NC algorithms for set cover with applications to learnin9 and geometry, Proc. 30th Ann. IEEE Syrup. Foundat. Cornput. Sci., (1989), 54-59.]] Google Scholar
Digital Library
- 34.Bern, M. Compatible tetrahedralizations, Proc. 9th Ann. ACM Syrup. Comput. Geom. (1993), 281-288.]] Google Scholar
Digital Library
- 35.Bern, M., Dobkin, D., Eppstein, D. Triangulatm9 polygons without lar9e angles, Proc. 8th Ann. ACM Symp. Comput. Geom. (1992), 222-231.]] Google Scholar
Digital Library
- 36.Bern, M., Eppstein, D. Mesh generation and optimal triangulation, in: Computing in Euclidean Geometry, 1, World Scientific, ed. D. Z. Du and F. K. Hwang (1992), 23-90.]]Google Scholar
- 37.Bern, M., Eppstein, D., Gilbert, J. Provably 9ood mesh generation, Ptoc. 31st Ann. IEEE Syrup. Foundat. Comput. Sci. (1990), 231-241.]]Google Scholar
- 38.BjSrner, A., Lov~sz, L., Yao, A.C. Linear decision trees: volume estimates and topological bounds, Proc. 24th Ann. ACM Syrup. Theory Comput. (1992), 17q- 177.]] Google Scholar
Digital Library
- 39.Bochnak, J., Coste, M., Roy. M.-F. Gdomdtrie algdbrique rdelle, Springer Verlag, I-Ieidelberg, 1987.]]Google Scholar
- 40.Boissonnat, J.D., Devillers, O., Schott, R., Teillaud, M., Yvinec, M. Applications of random sampling to online algorithms in computational geometry, Disc. Cornput. Geom., 8 (1992), 51-71.]]Google Scholar
Digital Library
- 41.Boissonnat, j.D., Teillaud, M. On the randomized construction of the Delaunay tree, Theoret. Comput. Sci., 112 (1993), 339-354.]] Google Scholar
Digital Library
- 42.Br6nnimann, H., Ch#zelle, B., Matou#ek, J. Product range spaces, sensitive sampling, and derandomization, Proc. 34th Ann. IEEE Syrup. Foundat. Comput. Sci. (1993), 400-409.]]Google Scholar
- 43.BrSnnimann, H., Chazelle, B., Pach, J. How hard is halfspace range searching?# Disc. Comput. Geom.# 10 (1993), 143-155.]]Google Scholar
- 44.Canny, J. The Complexity of Robot Motion Planning, MIT Press, 1987.]] Google Scholar
Digital Library
- 45.Canny, J. Some algebraic and geometric computations in PSPAGE, Proc. 20th Ann. ACM Syrup. Theory Comput. (1988), 460-467.]] Google Scholar
Digital Library
- 46.Canny, J. Generalized charactemstic polynomials, J. Symbolic Comput., 9 (1990), 241-250.]] Google Scholar
Digital Library
- 47.Canny, J. Some Practical Tools for Algebraic Geometry, Tech. Rep., Spring school on robot motion planning, Promotion Esprit, 1993.]]Google Scholar
- 48.Canny, J. Computing road maps #n general semialgebraic sets, The Computer Journal, 36 (1993), 504- 514.]]Google Scholar
Cross Ref
- 49.Canny, J. Improved algorithms for sign determination and existential quantifier elimination, The Computer Journal, 36 (1993), 409-418.]]Google Scholar
Cross Ref
- 50.Canny, J., Donald, B.R., Ressler, G. A rational rotation method for robust geometric algorithms, Proc. 8th Ann. ACM Syrup. Comput. Geom. (1992), 251-260.]] Google Scholar
Digital Library
- 51.Chazelle, B. Convex partitions of polyhedra: a lower bound and worst-case optimal algorithra, SIAM J. Cornput., 13 (1984), 488-507.]] Google Scholar
Digital Library
- 52.Chazelle, B. Filtering search: A new approach to queryanswering, SIAM J. Comput., 15 (1986), 703-724.]] Google Scholar
Digital Library
- 53.Chazelle, B. Lower bounds on the complexity of polytope range searching, J. Amer. Math. Soc., 2 (1989), 637- 666.]]Google Scholar
Cross Ref
- 54.Chazelle, B. Lower bounds for orthogonal range searching: I. the reporting case, IL the arithmetic model, J. ACM, 37 (1990), 200-212 and 439-463.]] Google Scholar
Digital Library
- 55.Chazelle, B. Triangulating a simple polygon in linear time, Disc. Comput. Geom., 6 (1991), 485-524.]] Google Scholar
Digital Library
- 56.Chazelle, B. An optimal algorithm for intersecting three-dimensional convex polyhedrc# SIAM J. Comput., 21 (1992), 671-696.]] Google Scholar
Digital Library
- 57.Chazelle, B. Cutting hyperplanes .for divzde-andconquer, Disc. Comput. Geom., 9 (1993), 145-158.]]Google Scholar
Digital Library
- 58.Chazelle, B. An optimal convex hull algorithm in any fixed dimension, Disc. Comput. Geom., 10 (1993), 377- 409.]]Google Scholar
Digital Library
- 59.Chazelle, B., Dobkin, D.P. Optimal convex decompositions, Computational Geometry, G.T. Toussaint, ed., North-Holland (1985), 63-133.]]Google Scholar
- 60.Chazelle, B., Edelsbrunner, H. An optimal algorithm for intersecting line segments in the plane, J. ACM 39 (1992), 1-54.]] Google Scholar
Digital Library
- 61.Chazelle, B., Edelsbrunner, H. Grigni, M., Guibas, L.J., Hershberger, J., Sharir, M., Snoeyink, J. Ray shooting in polygons using geodesic triangulations, Proc. 18th ICALP, LNCS, Springer-Verlag (1991), 661- 673.]] Google Scholar
Digital Library
- 62.Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L.J., Sharir, M., Welzl, E. Improved bounds on weak e-nets for convex sets, Proc. 25th Ann. ACM Syrup. Theory of Comput. (1993).]] Google Scholar
Digital Library
- 63.Ghazelle, D., Edelsbrunner, H., Guibas, L.J., Sharir, M. Lines in space combinatorics, algorithms and applications, Proc. 21st Ann. ACM Syrup. Theory of Comput. (1989), 382-393.]] Google Scholar
Digital Library
- 64.Chazelle, B., Edelsbrunner, H., Guibas, L.J., Sharir, M. A singly-exponential stratification scheme for real semi-algebraic varieties and its applications, Theoret. Comput. Sci., 84 (1991), 77-105.]] Google Scholar
Digital Library
- 65.Chazelle, B., Edelsbrunner, H., Guibas, L.J., Sharir, M. Diameter, width, closest line pair, and parametric searching, Disc. Comput. Geom., 10 (1993), 183-196.]]Google Scholar
Digital Library
- 66.Chazelle, B., Edelsbrurmer, H., Guibas, L.J., Sharir, M., Snoeyink, J. Computing a face in an arrangement of line segments and related problems, SIAM J. Cornput., 22 (1993), 1286-1302.]] Google Scholar
Digital Library
- 67.Chazelle, B., Friedman, J. A deterministic view of random sampling and its use in geometry, Combinatorica, 10 (1990), 229-249.]]Google Scholar
- 68.Chazelle, B., Guibas, L.J. Visibility and intersection problems in plane geometry, Disc. Comput. Geom., 4 (1989), 551-581.]]Google Scholar
Digital Library
- 69.Chazelle, B., Guibas, L.J. Fractional cascading: L A data structuring technique, IL Applications, Algorithmic#, 1 (1986), 133-162 and 163-191.]]Google Scholar
- 70.Chazelle, B., Matou#ek, J. On linear-time deterministic algorithms for optimization problems in fixed dimension, Proc. 4th Ann. ACM-SIAM Symp. Disc. Alg. (1993), 281-290.]] Google Scholar
Digital Library
- 71.Chazelle, B., Matougek, J. Derandomizing an outputsensitive convex hull algorithm in three dimensions, Comput. Geom.: Theory and Appl. (1994), to appear.]] Google Scholar
Digital Library
- 72.Chazelle, B., Palios, L. Triangulating a nonconvex polytope, Disc. Comput. Geom., 5 (1990), 505-526.]]Google Scholar
Digital Library
- 73.Chazelle, B., Rosenberg, B. Lower bounds on the complexity of simplex range reporting on a pointer machine, Proc. t9th ICALP, LNCS 623, Springer-Verlag (1992), 439-449.]] Google Scholar
Digital Library
- 74.Chazelle, B., Sharir, M. An algorithm for generalized point location and its applications, J. Symbolic Cornput., 10 (1990), 281-309.]] Google Scholar
Digital Library
- 75.Ch#zelle, B., Sharir, M., Welzl, E. Quasi-optimal up. per bounds for simplex range searching and new zor#e theorems, Algorithmica, 8 (1992), 407-429.]]Google Scholar
Digital Library
- 76.Chazelle, B., Shouraboura, N. Bounds on the size of tetrahedralizations, Proc. 10th Ann. ACM Symp. Cornput. Geom. (1994), to appear.]] Google Scholar
Digital Library
- 77.Chazelle, B., Welzl, E. Quasi-optimal range searching in spaces of finite VC-dimension, Disc. Comput. Geom., 4 (1989), 467-489.]]Google Scholar
Digital Library
- 78.Cheng, S.W., Janardan, R. New results on dynamic planar point location, SIAM J. Comput., 21 (1992), 972-999.]] Google Scholar
Digital Library
- 79.Chiang, Y.J., Preparata, F.P., Tamassia, R. A unified approach to dynamic point location, ray shooting, and shortest paths in planar maps, Proc. 4th ACM-SIAM Symp. Disc. Alg. (1993), 44-53.]] Google Scholar
Digital Library
- 80.Clarkson, K.L. Linear programming in O(n x 3 ) time, Inf. Process. Lett., 22 (1986), 21-24.]] Google Scholar
Digital Library
- 81.Clarkson, K.L. New applications of random sampling in computational geometry, Disc. Comput. Geom., 2 (1987), 195-222.]]Google Scholar
Digital Library
- 82.Clarkson, K.L. A randomized algorithm for closestpoint queries, SIAM J. Comput., 17 (1988), 830-847.]] Google Scholar
Digital Library
- 83.Clarkson, K.L. Las Vegas algorithm for linear programming when the dimension is small, Proc. 29th Ann. IEEE Syrup. Foundat. Comput. Sci. (1988), 452-457.]]Google Scholar
Digital Library
- 84.Clarkson, K.L. Safe and effective determinant evaluatzon, Proc. 33rd Ann. IEEE Symp. Foundat. Comput. Sci. (1992), 387-395.]]Google Scholar
- 85.Clarkson, K.L. Randomized geometric algorithms, in Computing in Euclidean Geometry, D.-Z. Du and F.K. Kwang ed., Lecture Notes Series on Comput. 1 (1992), World Scientific, 117-162.]]Google Scholar
- 86.Clarkson, K.L., Edelsbrunner, H., Guibas, L. J., Sharir, M., Welzl, E. Combinatorial complexity bounds for arrangements of curves and spheres, Disc. Comput. Geom., 5 (1990), 99-160.]]Google Scholar
Digital Library
- 87.Clarkson, K.L., Mehlhorn, K., Seidel, R. Four results on randomized incremental constructions, Proc. 9th Symp. Theoret. Aspects Comput. Sci., LNCS 577, Springer-Verlag (1992), 463-474.]] Google Scholar
Digital Library
- 88.Clarkson, K.L., Shot, P.W. Applications of random sampling in computational geometry, H, Disc. Comput. Geom., 4 (1989), 387-421.]]Google Scholar
Digital Library
- 89.Clarkson, K.L., Tarjan, R.E., Van Wyk, C.J. A fast Las Vegas algorithm for triangulating a simple polygon, Disc. Comput. Geom., 4 (1989), 423-432.]]Google Scholar
Digital Library
- 90.Cohen, E., Megiddo, N. Strongly polynomial-time and NC algorithms for detecting cycles zn dynamic graphs, Proc. 21st ACM Syrup. Theory Comput. (1989), 523- 534.]] Google Scholar
Digital Library
- 91.Cohen# M.# WMlace# J.# Radios,fy and Realistic Image Synthesis, Academic Press, 1993.]] Google Scholar
Digital Library
- 92.Cole, R. Searching and storing similar lists, J. Algorithms, 7 (1986), 202-220.]] Google Scholar
Digital Library
- 93.Cole, R. Slowing down sorting networks to obtain faster sorting algorithms, J. ACM, 34 (1987), 200-208.]] Google Scholar
Digital Library
- 94.Cole, R., Salowe, J., Steiger, W., Szemer#di, E. An optimal-time algorithm for slope selection, SIAM J. Comput., 18 (1989), 792-810.]] Google Scholar
Digital Library
- 95.Cole, R., Sharir, M. Visibility problems for polyhedral terrains, J. Symbolic Comput., 7 (1989), 11-30.]] Google Scholar
Digital Library
- 96.Cole, R., Sharir, M., Yap, C.K. On k.hulls and related problems, SIAM J. Comput., 16 (1987), 61-77.]] Google Scholar
Digital Library
- 97.Collins, G.E. Quantifier elimination for real closed fields by cylindric algebraic decomposition, Proc. 2nd GI Conf. on Automata Theory and Formal Languages, Springer-Verlag, LNCS 35, Berlin (1975), 134-183.]] Google Scholar
Digital Library
- 98.Cox, D., Little, J., O'Shea, D. Ideals, Varieties, and Algorithms, Springer-Verlag, 1992.]] Google Scholar
Digital Library
- 99.Crapo, H., Ryan, 3. Scene analysis and geometric homology, Proc. 2nd Ann. ACM Symp. Comput. Geom. (1986), 125-132.]] Google Scholar
Digital Library
- 100.Davenport, J. and Heintz, J. Real quantifier elimination is doubly exponential, J. Symbolic Comput., 5 (1988), 29-35.]] Google Scholar
Digital Library
- 101.Delfinado, C.J.A., Edelsbrunner, H. An incremental algorithm for betti numbers of simplicial complexes, Proc. 9th Ann. ACM Syrup. Comput. Geom. (1993), 232-239.]] Google Scholar
Digital Library
- 102.Devillers, O. Randomization yields simple O(n log* n) algorithms for difficult w(n) problems, Int. J. Comput. Geom. Appl., 2 (1992), 97-111.]]Google Scholar
Cross Ref
- 103.Devillers, O., Meiser, S., Teillaud, M. Fully dynamic Delaunay triangulation in logarithmic expected time per operation, Comput. Geom. Theory Appl., 2 (1992), 55- 80.]] Google Scholar
Digital Library
- 104.Dey, T.K. Triangulation and CSG representation of polyhedra with arbitrary genus, Proc. 7th Ann. ACM Syrup. Comput. Geom. (1991), 364-372.]] Google Scholar
Digital Library
- 105.Dey, T. Optimal algorithms to detect null-homologous cycles on 2-manifolds, Proc. 5th Canad. Conf. Compu,t. Geom. (1993), 273-278.]]Google Scholar
- 106.Dobkin, D.P., Kirkpatrick, D.G. Fast detection ofpolyhedral intersection, Theoret. Comput. Sci., 27 (1983), 241-253.]]Google Scholar
Cross Ref
- 107.Dobkin, D.P., Silver, D., Recipes for geometry and numerical analysis-part 1: an empirical study, Proc. 4th Ann. Symp. Comput. Geom. (1988), 93-105.]] Google Scholar
Digital Library
- 108.Donald, B.R. A geometric approach to error detection and recovery for robot motion planning with uncertainty, Artif. Intell., 37 (1988), 223-271.]] Google Scholar
Digital Library
- 109.Donald, B.R., Chang, D.R. On the complexity of computing the homology type of a triangulation, Proc. 32nd Ann. IEEE Symp. Foundat. Comput. Sci. (1991), 650- 662.]] Google Scholar
Digital Library
- 110.Donald, B.R., Xavier, P., Canny, J., Reif, J. On the complexity of kinodynamic planning, J. ACM, 40 (1993), 1048-1066.]] Google Scholar
Digital Library
- 111.Dyer, M.E. On a multidimensional search technique and its application to the Euclidean 1.centre problem, SIAM J. Comput., 15 (1986), 725-738.]] Google Scholar
Digital Library
- 112.Dyer, M.E. A class of convex programs with applications to computational geometry, Proc. 8th Ann. ACM Symp. Comput. Geom. (1992), 9-15.]] Google Scholar
Digital Library
- 113.Dyer, M.E., Frieze, A.M. A randomized algorithm for fixed-dimensional linear programming, Mathematical Programming, 44 (1989), 203-212.]] Google Scholar
Digital Library
- 114.Edelsbrunner, H. Algorithms in Combinatorial Geometry, Springer-Verlag, 1987.]] Google Scholar
Digital Library
- 115.Edelsbrunner, H. The union of balls and its dual shape, Proc. 9th Ann. ACM Symp. Comput. Geom. (1993), 218-231.]] Google Scholar
Digital Library
- 116.Edelsbrunner, H., Guibas, L.J., Hershberger, 3., Seidel, R., Sharir, M., Snoeyink, J., Welzl, E. Implicitly representing arrangements of lines or segments, Disc. Comput. Geom., 4 (1989), 433-466.]]Google Scholar
- 117.Edelsbrunner, H., Guibas, L.J., Sharir, M. The complexity and construction of many faces ,n arrangements of lines and segments, Disc. Comput. Geom., 5 (1990), 161-196.]]Google Scholar
Digital Library
- 118.Edelsbrunner, H., Guibas, L.J., Sharir, M. The complexity of many cells in arrangements o.f planes and related problems, Disc. Comput. Geom., 5 (1990), 197- 216.]]Google Scholar
Digital Library
- 119.Edelsbrunner, H., Guibas, L.J., Stolfi, J. Optimalpoint location in a monotone subdivision, SIAM J. Comput., 15 (1986), 317-340.]] Google Scholar
Digital Library
- 120.Edelsbrunner, H., Miicke, E. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms, ACM Trans. Graphics, 9 (1990), 66-104.]] Google Scholar
Digital Library
- 121.Edelsbrunner, H., Seidel, R. Voronoi dliagrams and arrangements, Disc. Comput. Geom., 1 (}986), 25-44.]]Google Scholar
- 122.Edelsbrunner, H., Seidel, R., Sharir, M. On the zone theorem for hyperplane arrangements, SIAM J. Comput., 22 (1993), 418-429.]] Google Scholar
Digital Library
- 123.Edelsbrunner, H., Shah, N. R. Triangulating topological spaces, Proc. 10th Ann. ACM Symp. Comput. Geom. (1994), to appear.]] Google Scholar
Digital Library
- 124.Emiris, I., Canny, J. A general approach to removing degeneracies, Proc. 32nd Ann. Symp. Foundat. Cornput. Sci. (1991), 405-413.]] Google Scholar
Digital Library
- 125.Erickson, J., Seidel, R. Better lower bounds on detecting al'fine and spherical degeneracies, Proc. 34th Ann. IEEE Symp. Foundat. Comput. Sci. (1993), 528-536.]]Google Scholar
- 126.Fitchas, N., Galligo, A., Morgenstern, J. Algorithmes rap#cles en#eque" nt#el et en parallel 29o,,r l#,#l;m;nat;on de quantificateurs en ggomdtrie dldmentaire, S#minaire Structures Ordonn#es, U.E.R. Math. Univ. Paris VII, 1987.]]Google Scholar
- 127.Fortune, S. A sweepline algorithm }or Voronoi diagrams, Algorithmica, 2 (1987), 153-174.]]Google Scholar
Digital Library
- 128.Fortune, S. Stable maintenance of point-set triangulation in two dimensions, manuscript, AT&T Bell Laboratories. Abbreviated version appeared in: Proc. 30th Ann. Syrup. Foundat. Comput. Sci. (1989), 494-499.]]Google Scholar
- 129.Fortune, S. Numerical stability o} algorithms for 2 d Delaunay triangulations and Vovonoi diagrams, Proc. 8th Ann. ACM Syrup. Comput. Geom. (1992), 83-92.]] Google Scholar
Digital Library
- 130.Fortune, S. Voronoi diagrams and Delaunay triangulatzons, in: Computing in Euclidean Geometry, eds: D.-Z. Du, F. Hwang, 1, World Scientific (1992), 193- 233.]]Google Scholar
- 131.Fortune, S. Computational Geometry, ed. R. Martin, Directions in Computational Geometry, Information Geometers, to appear.]]Google Scholar
- 132.Fortune, S., Milenkovic, V. Numerical stability of algorithms .for line arrangements, Proc. 7th Ann. Symp. Comput. Geom. (1991), 334-341.]] Google Scholar
Digital Library
- 133.Fortune, S., Van Wyk, C. J. Efficient exact arithmetic Syrup. Comput. Geom. (1993), 163-172.]] Google Scholar
Digital Library
- 134.Fredman, M.L. A lower bound on the complexity of orthogonal range queries, J. ACM, 28 (1981), 696-705.]] Google Scholar
Digital Library
- 135.Fredman, M.L. Lower bounds on the complexity of some optimal data structures, SIAM J. Comput., 10 (1981), 1-10.]]Google Scholar
Digital Library
- 136.Freedman, M.H. Identi/ying attractors via homology: a manuscript, 1991.]]Google Scholar
- 137.G#rtner, B. A subexponential algomthm }or abstract optzmization problems, Proc. 33rd Ann. IEEE Syrup. Foundat. Comput. Sci. (1992), 464-472.]]Google Scholar
- 138.Garey, M.R., Johnson, D.S., Preparata, F.P., Tarjan, R.E. Triangulating a simple polygon, Inform. Process. Lett., 7 (1978), 175-180.]]Google Scholar
Cross Ref
- 139.Glassner, A.S. Ray Tracing, Academic Press, 1989.]]Google Scholar
- 140.Goodman, J.E., Pollack, R. Multidimensional sorting, SIAM J. Comput., 12 (1983), 484-507.]]Google Scholar
Cross Ref
- 141.Goodman, J.E., Pollack, R. Upper bounds .for configurations and polytopes in 1##, Disc. Comput. Geom., 1 (1986), 219-227.]]Google Scholar
Digital Library
- 142.Goodman, J.E., Pollack, R., Sturmfels, B. The intrinsic spread o/ a configuration is R#, J. Amer. Math. Soc., 3 (1990), 639-651.]]Google Scholar
- 143.Goodman, J.E., Pollack, R., Wenger, R. Geomett:ic transversal theory, in: New Trends in Discrete and Computational Geometry, ed. J. Pach, Algorithms and Combinatorics, 10, Springer-Verlag (1993), 163-198.]]Google Scholar
- 144.Goodrich, M.T. Planar separators and parallel polygon triangulation, Proc. 24th Ann. ACM Syrup. Theory Comput. (1992), 507-516]] Google Scholar
Digital Library
- 145.Goodrich, M. T. Constructing arrangements optimally in parallel, Disc. Comput. Geom., 9 (1993), 371-385.]]Google Scholar
Digital Library
- 146.Goodrich, M. T., Atallah, M. J., Overmars, M. H. Output-sensitive methods for rectilinear hidden surface removal, Inform. Comput., 107 (1993), 1-24.]] Google Scholar
Digital Library
- 147.Goodrich, M.T., Tamassia, R. Dynamic trees and dynamic point locatzon, Proc. 23rd Ann. ACM Syrup. Theory Comput. (1991), 523-533.]] Google Scholar
Digital Library
- 148.Goodrich, M.T., Tamassia, R. Dynamic ray shooting and shortest paths via balanced geodesic triangulations, Proc. 9th Ann. ACM Symp. Comput. Geom. (1993), 318-327.]] Google Scholar
Digital Library
- 149.Graham, R.L. An efficient algorithm for determining the convex hull of a planar point set, Inform. Process. Lett., 1 (1972), 132-133.]]Google Scholar
Cross Ref
- 150.Greene, D., Yao, F. Finite-resolution computational geometry, Proc. 27th Ann. Symp. Foundat. Comput. Sci. (1986), 143-152.]]Google Scholar
Digital Library
- 151.Grigor'ev, D. Complexity of deciding Tarski algebra, J. Symbolic Comput., 5 (1988), 37-64.]] Google Scholar
Digital Library
- 152.Grigor'ev, D. and Vorobjov, N. Solving systems of polynomial inequalities in subexponential time, J. Symbolic Comput., 5 (1988), 37-64.]] Google Scholar
Digital Library
- 153.Guibas, L.J., Knuth, D.,E., Sharir, M. Randomized incremental construction of Delaunay and Voronoi diagrams, Algorithmica, 7 (1992), 381-413.]]Google Scholar
Digital Library
- 154.Guibas, L.J., Overmars, M., Sharir, M. Ray shooting, implicit point location, and related queries in arrangements of segments, Tech. Rep. 433, New York Univ., March 1989.]]Google Scholar
- 155.Guibas, L.J., Salesin, D., Stolfi, J., Epsilon geometry: building robust algorithms from imprecise computations, Proc. 5th Ann. Symp. Comput. Geom. (1989), 208-217.]] Google Scholar
Digital Library
- 156.Guibas, L.J., Sharir, M. Combinatorics and algomthms of arrangements, New Trends in Discrete and Computational Geometry, J. Pach, ed., 1993, Springer-Verlag, 9-#6.]]Google Scholar
- 157.Halperin, D., Sharir, M. New bounds for lower envelopes in three dimensions, with applications to visibility in terrains, Proc. 9th Ann. ACM Syrup. Comput. Geom. (1993), 11-18.]] Google Scholar
Digital Library
- 158.I-Ialperin, D., Sharir, M. Almost tight upper bounds for the single cell and zone problems in three dimensions, Proc. 10th Ann. ACM Symp. Comput. Geom. (1994), to appear.]] Google Scholar
Digital Library
- 159.Hart, S., Sharir, M. Nonlinearity o} Davenport- Schinzel sequences and of generalized path compression schemes, Combinatorica, 6 (1986), 151-177.]] Google Scholar
Digital Library
- 160.Haussler, D., Welzl, E. e-nets and simplex range queries, Disc. Comput. Geom., 2 (1987), 127-151.]]Google Scholar
Digital Library
- 161.Heintz, J., Roy, M.-F., Solern6, P. On the complexity of semi-algebraic sets, Proc. IFIP San Francisco, North- Holland (1989), 293-298.]]Google Scholar
- 162.Heintz, J., Roy, M.-F., Solern6, P. Sur la complexitd du principe de Tarskz.Seidenberg, Bull. Soc. Math. France, 118 (1990), 101-126.]]Google Scholar
Cross Ref
- 163.Heintz, J., Recio, T., Roy, M.-F. Algorithms in real algebraic geometry and applications to computational geometry, Discrete and Computational Geometry, Dim#cs Series 6, AMS-ACM, ed. J.E. Goodman, R. Pollack, W. Steiger (1991), 137-163.]]Google Scholar
- 164.Hershberger, J., Suri, S. A pedestrian approach to ray shooting: shoot a ray, take a walk, Proc. 4th ACM- SIAM Syrup. Disc. Alg. (1993), 54-63.]] Google Scholar
Digital Library
- 165.Hoffmann, C. Geometric and Solid Modeling, Morgan Kaufmann, 1989.]] Google Scholar
Digital Library
- 166.Hoffmann, C. Hopcroft, J., Karasick, M. Towards ,mplementing robust geometric computations, Proc. 4th Ann. Syrup. Comput. Geom. (1988), 106-117.]] Google Scholar
Digital Library
- 167.Hoffmann, C., Hopcroft, J., Karasick, M. Robust set operations on polyhedral solids, IEEE Comput. Graph. Appl., 9 (1989), 50-59.]] Google Scholar
Digital Library
- 168.Hopcroft, J., Wilfong, G. Reducing multiple object motion planning to graph searching, SIAM J. Comput., 15 (1986), 768-785.]] Google Scholar
Digital Library
- 169.Huttenlocher, D. P. Three-Dzmensional Recognition of Solid Objects from a Two-Dimensional Image, Ph.D. Thesis, MIT, Report TR-1045, 1988.]] Google Scholar
Digital Library
- 170.Impagliazzo, R., Zuckerman, D. How to recycle random bits, Proc. 30th Ann. IEEE Syrup. Foundat. Comput. Sci. (1989), 248-253.]]Google Scholar
Digital Library
- 171.Kalai, G. A subexponential randomized simplex algomthm, Proc. 24th Ann. ACM Symp. Theory Comput. (1992), 475-482.]] Google Scholar
Digital Library
- 172.Karasick, M., Lieber, D., Nackman, L. Efficient Delaunay triangulation using rational arithmetic, ACM Trans. Graphics, 10 (1990), 71-91.]] Google Scholar
Digital Library
- 173.Karasick, M. On the representation and manipulation of rigid solids, Ph.D. thesis, McGill U., 1988.]] Google Scholar
Digital Library
- 174.Katz, M., Sharir, M. Optimal slope selection via expanders, Proc. 5th Canad. Conf. Comput. Geom. (a998), 139-144.]]Google Scholar
- 175.Kirkpatrick, D.G. Optimal search in planar subdivisions, SIAM J. Comput., 12 (1983), 28-35.]]Google Scholar
Digital Library
- 176.Kirkpatrick, D.G., Klawe, M.M., Tarjan, R.E. Polygon triangulation in O(nloglogn) time with simple data structures, Disc. Comput. Geom., 7 (1992), 329-346.]]Google Scholar
Digital Library
- 177.Kirkpatrick, D.G., Seidel R. The ultimate planar convex hull algomthm? SIAM J. Comput., 15 (1986), 287- 299.]] Google Scholar
Digital Library
- 178.Klein, R. Abstract Voronoi diagrams and their applications, Computational Geometry and its Applications, LNCS 333, Springer-Verlag (1988), 148-157.]] Google Scholar
Digital Library
- 179.Li, Z., Milenkovic, V. Constructing strongly convex hulls using exact or rounded arithmetic, Proc. 6th Ann. Syrup. Comput. Geom. (1990), 235-243.]] Google Scholar
Digital Library
- 180.Lipton, R.J., Tarjan, R.E. Applications of a planar separator theorem, SIAM 3. Comput., 9 (1980), 615- 627.]]Google Scholar
- 181.Lo, C.-Y, Matou#ek, J., Steiger, W. Ham-sandwzch cuts in Ra, Proc. 24th Ann. ACM Symp. Theory Comp,t. (1992), 839-545.]] Google Scholar
Digital Library
- 182.Luby, M. A simple parallel algorithm .for the maximal independent set problem, Proc. 17th Ann. ACM Symp. Theory Comput. (1985), 1-10.]] Google Scholar
Digital Library
- 183.Matou#ek, J. Construction of e-nets, Disc. Comput. Geom., 5 (1990), 427-448.]]Google Scholar
Digital Library
- 184.Matougek, J. Cutting hyperplane arrangements, Disc. Comput. Geom., 6 (1991), 385-406.]] Google Scholar
Digital Library
- 185.Matou#ek, J. Approximations and optimal geometric divide-and-conquer, Proc. 23rd ACM Syrup. Theory Comput. (1991), 506-511.]] Google Scholar
Digital Library
- 186.Matou#ek, J. Range searching with efficient h,erarchical cuttings, Disc. Comput. Geom., 10 (1993), 157-182.]]Google Scholar
Digital Library
- 187.Matou#ek, J. Efficient partition trees, Disc. Comput. Geom., 8 (1992), 315-334.]]Google Scholar
Digital Library
- 188.Matou#ek, J. Reporting points in halfspaoes, Comput. Geom. Theory Appl., 2 (1992), 169-186.]] Google Scholar
Digital Library
- 189.Matou#ek, J. Linear optimization queries, J. Algorithms, 14 (1993), 432-448.]] Google Scholar
Digital Library
- 190.Matou#ek, J. Geometric range searching, Tech. Report B-93-09, Free Univ. Berlin, 1993.]]Google Scholar
- 191.Matou#ek, J., Schwarzkopf, O. A deterministic algorithm for the three-dimensional diameter problem, Proc. 25th Ann. ACM Symp. Theory Comput. (1993), 478-484.]] Google Scholar
Digital Library
- 192.Matou#ek, J., Schwarzkopf, O. On ray ,:hooting in convex polytopes, Disc. Comput. Geom., 10 (1993), 215- 232.]]Google Scholar
Digital Library
- 193.Matou#ek, J., Sharir, M., Welzl, E. A subexponential bound for linear programming, Proc. 8th ACM Syrup. Comput. Geom. (1992), 1-8. To appear in Algorithmica.]] Google Scholar
Digital Library
- 194.Matou#ek, J., Welzl, E., Wernisch, L. Discrepancy and e-approximations for bounded VC-dimension# Combinatorica, 13 (1993), 455-466.]]Google Scholar
- 195.Megiddo, N. Combinatorial optimization with rational objective functions, Mathematics of Operations Iresearch, 4 (1979), 414-424.]]Google Scholar
Digital Library
- 196.Megiddo, N. Applying parallel computation algorithms in the design of serial algorithms, J. ACM, 30 (1983), 852-865.]] Google Scholar
Digital Library
- 197.Megiddo, N. Linear programming in linear time when the dimension is fixed, J. ACM, 31 (1984), 114-127.]] Google Scholar
Digital Library
- 198.Mehlhorn, K. Data Structures and Algorithms 3: Multidimensional Searching and Computational Geometry, Springer-Verlag, Heidelberg, Germany, 1984.]] Google Scholar
Digital Library
- 199.Mehlhorn, K., Simon, K. Intersecting two polyhedra one of which is convex, Proc. Foundat. Comput. Theory, LNCS 199, Springer-Verlag (1985), 534-542.]] Google Scholar
Digital Library
- 200.Mehlhorn, K., Yap, C.K. Constructive Whitney- Graustein theorem, or how to untangle closed planar curves, SIAM J. Comput., 20 (1991), 603-621.]] Google Scholar
Digital Library
- 201.Milenkovic, V. Verifiable implementations of geometric algorithms using finite precision arithmetic, Artificial Intelligence, 37 (1988), 377-401.]] Google Scholar
Digital Library
- 202.Milenkovic, V. Verifiable Implementations of Geometric Algorithms using Finite Precision Arithmetic, Ph.D. Thesis, Carnegie-Mellon, 1988. Technical Report CMU-CS-88-168, Carnegie Mellon University, 1988.]] Google Scholar
Digital Library
- 203.Milenkovic, V. Double precision geometry: a general technique for calculating line and segment intersections using rounded arithmetic, Proc. 30th Ann. IEEE Symp. Foundat. Comput. Sci. (1989), 500-505.]]Google Scholar
Digital Library
- 204.Milenkovic, V. Rounding face lattices in the plane, Abstracts 1st Canad. Conf. Comput. Geom. (1989), 12.]]Google Scholar
- 205.Milenkovic, V. Rounding face lattices in d dimensions, Proc. 2nd Canad. Conf. Comput. Geom. (1990), 40-45.]]Google Scholar
- 206.Mishra, B. Algorithmic Algebra, Springer-Verlag New York, Inc., 1993.]] Google Scholar
Digital Library
- 207.Mitchell, $., Vavasis, S. Quality mesh generation in three dimensions, Froc. 8th Ann. ACM Symp. Comput. Geom. (1992), 212-221.]] Google Scholar
Digital Library
- 208.Motwani, R., Naor, J., Naor, M. The probab#listic method yields deterministic parallel algorithms, Proc. 30th Ann. IEEE Syrup. Foundat. Comput. Sci. (1989), 8-13.]] Google Scholar
Digital Library
- 209.Muller, D.E., Preparata, F.P. Finding the intersection of two convex polyhedra, Theoret. Comput. Sci., 7 (1978), 217-236.]]Google Scholar
Cross Ref
- 210.Mulmuley, K. A fast planar partition algorithm 1, Proc. 29th Ann. IEEE Syrup. Foundat. Comput. Sci. (1988), 580-589.]]Google Scholar
Digital Library
- 211.Mulmuley, K. On obstructions in relation to a fixed viewpoint, Proc. 30th Ann. IEEE Symp. Foundat. Comput. Sci. (1989), 592-597.]]Google Scholar
Digital Library
- 212.Mulmuley, K. On levels in arrangements and Voronoi diagrams, Disc. Comput. Geom., 6 (1990), 307-338.]]Google Scholar
Digital Library
- 213.Mulmuley, K. A fast planar partition algorithm II, 3. ACM, 38 (1991), 74-103.]] Google Scholar
Digital Library
- 214.Mulmuley, K. Hidden surface removal with respect to a moving point, Proc. 23rd Ann. ACM Syrup. Theory Comput. (1991), 512-522.]] Google Scholar
Digital Library
- 215.Mulmuley, K. Randomized multidimensional search trees: dynamic sampling, Proc. 7th Ann. ACM Symp. Comput. Geom. (1991), 121-131.]] Google Scholar
Digital Library
- 216.Mulmuley, K. Randomized multidimensional search trees: lazy balancing and dynamic shuffling, Proc. 32nd IEEE Ann. Syrup. Foundat. Comput. Sci. (1991), 180- 194.]] Google Scholar
Digital Library
- 217.Mulmuley, K. Randomized multidimensional search trees: further results in dynamic sampling, Proc. 32nd IEEE Ann. Symp. Foundat. Comput. Sci. (1991), 216- 227.]] Google Scholar
Digital Library
- 218.Mulmuley, K. Randomized geometric algorithms and pseudo-random generators, Proc. 33rd Ann. IEEE Syrup. Foundat. Comput. Sci. (1992), 90-100.]]Google Scholar
Digital Library
- 219.Mulmuley# K. Computational Geometry: An Introduction Through Randomized Algorithms, Prentice-Hall, 1994.]]Google Scholar
- 220.Naor, J., Naor, M. Small-bias probability spaces: efficient constructions and applications, Proc. 22nd Ann. ACM Syrup. Theory of Comput. (1990), 213-223.]] Google Scholar
Digital Library
- 221.Norton, C.H., Plotkin, S.A., Tardos, E. Using separation algorithms in fixed dimensions, j. Algorithms, 13 (1992), 79-98.]] Google Scholar
Digital Library
- 222.O'Rourke, J. Art Gallery Theorems and Algorithms, Oxford Univ. Press, New York, NY (1987).]] Google Scholar
Digital Library
- 223.O'Rourke, J. Computational G#om#try in C, Cambridge Univ. Press, 1994.]] Google Scholar
Digital Library
- 224.Pach, J., Agarwal, P.K. Combinatorial Geometry, John Wiley & Sons, in press.]]Google Scholar
- 225.Pach, J., Steiger, W., Szemer6di, E. An upper bound on the number of planar k-sets, Disc. Comput. Geom., 7 (1992), 109-123.]]Google Scholar
Digital Library
- 226.Pellegrini, M. Ray shooting on triangles in 3- dimensional space, Algorithmica, 9 (1993), 471-494.]]Google Scholar
Cross Ref
- 227.Pellegrini, M. On point location and motion planning among simplices, these proceedings.]] Google Scholar
Digital Library
- 228.Poll#ck, R., Roy, M.-F. On the number of cells defined by a set of polynomials, Compte-Rendus, 316 (1993), 573-577.]]Google Scholar
- 229.Preparata, F.P., Hang, S.J. Convex hulls of finite sets of points in two and three dimensions, Comm. ACM, 20 (#977), 87-93.]] Google Scholar
Digital Library
- 230.Prepatata, F.P, Shamos, M.I. Computational Geome. try: an lntroductzon, Springer-Verlag, New York, 1988.]] Google Scholar
Digital Library
- 231.Preparata, F.P., Tamassia, R. Fully dynamic techniques for point location and transitive closure in planar structures, Proc. 29th Ann. IEEE Symp. Foundat. Comput. Sci. (1988), 558-567.]]Google Scholar
Digital Library
- 232.Prepar#t#, F.P., Tamassia, R. Efficient point location in a convex spatial cell-complex, SIAM J. Comput., 21 (1992), 267-280.]] Google Scholar
Digital Library
- 233.Prill, D. On approximations and incidenoe in cylindrical algebraic decompositions, SIAM J. Comput., 15 (1986), 972-993.]] Google Scholar
Digital Library
- 234.Raghavan, P. Probabilistzc construction of determirtistzc algorithms: Approximating packin9 integer programs, J. Comput. System Sci., 37 (1988), 130-143.]] Google Scholar
Digital Library
- 235.Ramos, E., Intersection of unit-balls and diameter of a set of points in R3, manuscript, 1994.]]Google Scholar
- 236.Reif, J.H., Sen, S. Optimal randomized parallel algorithms for computational geometry, Algorithmica, 7 (1992), 91-117.]]Google Scholar
Digital Library
- 237.Renegar, J. On the computational complexity and geometry of the first order theory of the reals, I, iI, II}, J. Symbolic Comput., 13 (1992), 255-352.]] Google Scholar
Digital Library
- 238.Ruppert, J., Seidel, R. On the difficulty of triangulating three-dimensional non-convex polyhedra# Disc. Comput. Geom., 7 (1992), 227-253.]]Google Scholar
Digital Library
- 239.Saalfeld, A. Divide_and_conquer in early algebraic topology: the Mayer-Vietoris exact homology sequence revisited, Abstracts 1st Canad. Conf. Comput. Geom. (1989), 11.]]Google Scholar
- 240.Sarn#k, N., Tarjan, R.E. Planar point location using persistent search trees, Comm. ACM, 29 (1986), 669- 679.]] Google Scholar
Digital Library
- 241.Schipper, it. Determining contractibility of curves, Proc. 8th Ann. ACM Syrup. Comput. Geom. (1992), 358-367.]] Google Scholar
Digital Library
- 242.Schwartz, J.T., Sharir, M. On the "piano movers" problem. II: General techniques for computing topological properties of real algebraic manifolds, Adv. in Appl. Math., 4 (1983), 298-35.1.]]Google Scholar
Digital Library
- 243.Schwartz, J.T., Sharir, M. Algorithmzc motion plannzng in robotzcs, in: Algorithms and Complexity, Handbook of Theoretical Computer Science, ed. J. van Leeuwen, Vol. A, Elsevier (1990), 391-430.]] Google Scholar
Digital Library
- 244.Seidel, R. A convex hull algorithm optimal for point sets in even dimensions, Univ. British Columbia, tech. Rep. 81-14, 1981.]] Google Scholar
Digital Library
- 245.Seidel, R. Constructing higher-dimensional convex hulls at logarithmzc cost per face, Proc. 18th Ann. ACM Symp. Theory Comput. (1986), 404-413.]] Google Scholar
Digital Library
- 246.Seidel, R. Small-dimensional linear programming and convex hulls made easy, Disc. Comput. Geom., 6 (1991), 423-434.]] Google Scholar
Digital Library
- 247.Seidel, R. A simple and fast increraental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons, Comput. Geom. Theory Appl. 1 (1991), 51-64.]] Google Scholar
Digital Library
- 248.Seidel, R. Backward analysis of randomized geometric algorithms, New Trends in Discrete and Computational Geometry, J. Pach, ed., 1993, Springer-Verlag, 37-67.]]Google Scholar
- 249.Seidel, R. The nature and meaning of perturbations zn geometric computing, manuscript, 1994.]]Google Scholar
- 250.Shamos, M.I., Hoey, D. Closest-point .problems, Proc. 16th Ann. IEEE Symp. Foundat. Comput. Sci. (1975), 151-162.]]Google Scholar
- 251.Sharir, M. Almost tight upper bound,, for lower envelopes in higher dimensions, Proc. 34th Ann. IEEE Symp. Foundat. Comput. Sci. (1993), 498-507.]]Google Scholar
Digital Library
- 252.Sharir, M., Agarwal, P.K. Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge Univ. Press, to #ppear.]] Google Scholar
Digital Library
- 253.Sharir, M., Welzl, E. A combinatorial bound for linear programming and related problems, Proc. 9th Symp. Theoret. Aspects of Comput. Sci. LNCS 577 (1992), 569-579.]] Google Scholar
Digital Library
- 254.Spencer, J.H. Ten Lectures on the Probabzhstic Method, CBMS-NSF, SIAM, 1987.]]Google Scholar
- 255.Sugihara, K., Iri, M. Construction of the Voronoi diagram for one milhon generators in single precision arithmetic, First Canad. Conf. Comput. Geom., 1989.]]Google Scholar
- 256.Sugihara, K., Iri, M. A sohd modeling system free from topological znconsistency, J. Information Processing, Information Processing Society of Japan, 12 (1989), 380-393.]] Google Scholar
Digital Library
- 257.Tarjan, R.E., Van Wyk, C.J. An O(nloglogn)-tzme algorithm for tr'#angttlat#ng a simple polygon, 9IAM J. Comput., 17 (1988), 143-178.]] Google Scholar
Digital Library
- 258.Tourlakis, G., Mylopoulos, J. Some results in computational topology, J. ACM, 20 (1973), 439-455.]] Google Scholar
Digital Library
- 259.Vaidya, P.M., Space-time tradeoffs for orthogonal range queries, SIAM J. Comput., 18 (1989), 748-758.]] Google Scholar
Digital Library
- 260.Vapnik, V.N., Chervonenkis, A. Ya. On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl., 16 (1971), 264- 280.]]Google Scholar
Cross Ref
- 261.Vegter, G. Kink-free deformations of polygons, Proc. 5th Ann. ACM Syrup. Comput. Geom. (1989), 61-68.]] Google Scholar
Digital Library
- 262.Vegter, G., Yap, C.K. Computational complexity of combinatorial surfaces, Proc. 6th Ann. ACM Symp. Coraput. Geom. (1990), 102-111.]] Google Scholar
Digital Library
- 263.Weispfenning, V. The complexity of linear problems in fields, J. Symbolic Comput., 5 (1988), 3-27.]] Google Scholar
Digital Library
- 264.Welzl, E. Partition trees :for triangle counting and other range searching problems, Proc. 4th Ann. ACM Syrup. Comput. Geom. (1988), 23-33.]] Google Scholar
Digital Library
- 265.Welzl, E., On spanning trees with low crossing numbers, Tech. Rep. TR B 92-02, Free University, Berlin, 1992.]]Google Scholar
Cross Ref
- 266.Whitney, H. Elementary structure of real algebraic va. rieties, Annals of Math., 66 (1957).]]Google Scholar
- 267.Willard, D.E. Polygon retrieval, SIAM J. Comput., 11 (1982), 149-165.]]Google Scholar
Cross Ref
- 268.Y#o, A.C. On the complexity of maintaining partial sums, SIAM J. Comput., 14 (1985), 277-288.]]Google Scholar
Cross Ref
- 269.Y#o, A.C. A lower bound to finding convex hulls, J. ACM, 28 (1981), 780-787.]] Google Scholar
Digital Library
- 270.Y#o, A.C. Lower bounds for algebraic computation trees with integer inputs, Proc. 30th Ann. IEEE Syrup. Foundat. Comput. Sci. (1989), 308-313.]]Google Scholar
- 271.Y#o, F.F. Computational Geometry, in: Algorithms and Complexity, Handbook of Theoretical Computer Science, ed. J. w# Leeuwen, Vol. A, Elsevier (1990), 343-389.]] Google Scholar
Digital Library
- 272.Y#o, A.C., Y#o, F.F. A general approach to ddimensional geometric queries, Proc. 17th Ann. ACM Syrup. Theory of Comput. (1985), 163-168.]] Google Scholar
Digital Library
- 273.Y#p, C.K. Symbolic treatment of geometric degeneracies, J. Symbolic Comput., 10 (1990), 349-370.]] Google Scholar
Digital Library
- 274.Y#p, C.K. A geometric consistency theorem for a symbolic perturbation scheme, J. Comput. Sys. Sci., 40 (1990), 2-18.]] Google Scholar
Digital Library
- 275.Yap, C.K. Towards exact geometric computation, Proc. 5th Canad. Conf. Comput. Geom. (1993), 405- 419.]]Google Scholar
Index Terms
Computational geometry: a retrospective
Recommendations
Recent Advances in Computational Conformal Geometry
Proceedings of the 13th IMA International Conference on Mathematics of Surfaces XIIIComputational conformal geometry focuses on developing the computational methodologies on discrete surfaces to discover conformal geometric invariants. In this work, we briefly summarize the recent developments for methods and related applications in ...





Comments