skip to main content
research-article

Blue-noise point sampling using kernel density model

Published:25 July 2011Publication History
Skip Abstract Section

Abstract

Stochastic point distributions with blue-noise spectrum are used extensively in computer graphics for various applications such as avoiding aliasing artifacts in ray tracing, halftoning, stippling, etc. In this paper we present a new approach for generating point sets with high-quality blue noise properties that formulates the problem using a statistical mechanics interacting particle model. Points distributions are generated by sampling this model. This new formulation of the problem unifies randomness with the requirement for equidistant point spacing, responsible for the enhanced blue noise spectral properties. We derive a highly efficient multi-scale sampling scheme for drawing random point distributions from this model. The new scheme avoids the critical slowing down phenomena that plagues this type of models. This derivation is accompanied by a model-specific analysis.

Altogether, our approach generates high-quality point distributions, supports spatially-varying spatial point density, and runs in time that is linear in the number of points generated.

Skip Supplemental Material Section

Supplemental Material

tp022_11.mp4

References

  1. Balzer, M., Schlömer, T., and Deussen, O. 2009. Capacity-constrained point distributions: a variant of lloyd's method. In ACM SIGGRAPH 2009 papers, ACM, New York, NY, USA, 86:1--86:8. Google ScholarGoogle Scholar
  2. Besag, J. 1994. Discussion: Markov chains for exploring posterior distributions. Annals of Statistics 2, 4, 1734--1741.Google ScholarGoogle ScholarCross RefCross Ref
  3. Binney, J., Dowrick, N., Fisher, A., and Newman, M. 1986. The Theory of Critical Phenomena. Clarendon Press, Oxford. Google ScholarGoogle Scholar
  4. Bowers, J., Wang, R., Wei, L.-Y., and Maletz, D. 2010. Parallel poisson disk sampling with spectrum analysis on surfaces. In ACM SIGGRAPH Asia 2010 papers, ACM, New York, NY, USA, 166:1--166:10. Google ScholarGoogle Scholar
  5. Cohen, M. F., Shade, J., Hiller, S., and Deussen, O. 2003. Wang tiles for image and texture generation. In ACM SIGGRAPH 2003 Papers, ACM, New York, NY, USA, 287--294. Google ScholarGoogle Scholar
  6. Cook, R. L., Porter, T., and Carpenter, L. 1984. Distributed ray tracing. In ACM SIGGRAPH 1984 papers, ACM, New York, NY, USA, 137--145. Google ScholarGoogle Scholar
  7. Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5 (January), 51--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Deussen, O., Hanrahan, P., Lintermann, B., Měch, R., Pharr, M., and Prusinkiewicz, P. 1998. Realistic modeling and rendering of plant ecosystems. In ACM SIGGRAPH 1998 papers, ACM, New York, NY, USA, 275--286. Google ScholarGoogle Scholar
  9. Deussen, O., Hiller, S., van Overveld, C., and Strothotte, T. 2000. Floating points: A method for computing stipple drawings. Computer Graphics Forum 19, 40--51.Google ScholarGoogle ScholarCross RefCross Ref
  10. Dippé, M. A. Z., and Wold, E. H. 1985. Antialiasing through stochastic sampling. In ACM SIGGRAPH 1985 Papers, ACM, New York, NY, USA, 69--78. Google ScholarGoogle Scholar
  11. Dress, C., and Krauth, W. 1995. Cluster algorithm for hard spheres and related systems. Journal of Physics A: Mathematical and General 28, 23.Google ScholarGoogle ScholarCross RefCross Ref
  12. Du, Q., Faber, V., and Gunzburger, M. 1999. Centroidal voronoi tessellations: Applications and algorithms. SIAM Review 41, 4, 637--676. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Dunbar, D., and Humphreys, G. 2006. A spatial data structure for fast poisson-disk sample generation. In ACM SIGGRAPH 2006 Papers, ACM, New York, NY, USA, SIGGRAPH '06, 503--508. Google ScholarGoogle Scholar
  14. Floyd, R. W., and Steinberg, L. 1976. An Adaptive Algorithm for Spatial Greyscale. Proceedings of the Society for Information Display 17, 2, 75--77.Google ScholarGoogle Scholar
  15. Gamito, M. N., and Maddock, S. C. 2009. Accurate multidimensional poisson-disk sampling. ACM Trans. Graph. 29 (December), 8:1--8:19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Goodman, J., and Sokal, A. D. 1989. Multigrid monte carlo method. conceptual foundations. Phys. Rev. D 40, 6 (Sep), 2035--2071.Google ScholarGoogle ScholarCross RefCross Ref
  17. Grenander, U., and Miller, M. I. 1994. Representations of knowledge in complex systems. Journal of the Royal Statistical Society. Series B (Methodological) 56, 4, 549--603.Google ScholarGoogle ScholarCross RefCross Ref
  18. Hiller, S., Deussen, O., and Keller, A. 2001. Tiled blue noise samples. In Proc. of Vision Modeling and Visualization, Aka GmbH, 265--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jones, T. R. 2006. Efficient generation of poisson-disk sampling patterns. Graphics, Fpu, and Game Tools 11, 2, 27--36.Google ScholarGoogle ScholarCross RefCross Ref
  20. Kollig, T., and Keller, A. 2003. Efficient illumination by high dynamic range images. In Proc. of Eurographics workshop on Rendering, Eurographics Association, Aire-la-Ville, Switzerland, 45--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive wang tiles for real-time blue noise. In ACM SIGGRAPH 2006 Papers, ACM, New York, NY, USA, 509--518. Google ScholarGoogle Scholar
  22. Lagae, A., and Dutré, P. 2008. A comparison of methods for generating poisson disk distributions. Computer Graphics Forum 27, 1 (March), 114--129.Google ScholarGoogle ScholarCross RefCross Ref
  23. Landau, D., and Binder, K. 2005. A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, New York, NY, USA. Google ScholarGoogle Scholar
  24. Li, H., Nehab, D., Wei, L.-Y., Sander, P., and Fu, C.-W. 2009. Fast capacity constrained voronoi tessellation. Microsoft Research, no. MSR-TR-2009-174.Google ScholarGoogle Scholar
  25. Li, H., Wei, L.-Y., Sander, P. V., and Fu, C.-W. 2010. Anisotropic blue noise sampling. In ACM SIGGRAPH Asia 2010 papers, ACM, New York, NY, USA, 167:1--167:12. Google ScholarGoogle Scholar
  26. Liu, J., and Luijten, E. 2004. Rejection-free geometric cluster algorithm for complex fluids. Phys. Rev. Lett. 92, 3 (Jan), 035504.Google ScholarGoogle ScholarCross RefCross Ref
  27. Lloyd, S. 1982. Least squares quantization in pcm. Information Theory, IEEE Transactions on 28, 2, 129--137.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. McCool, M., and Fiume, E. 1992. Hierarchical poisson disk sampling distributions. In Proc. of Graphics interface, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 94--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. In ACM SIGGRAPH 1987 Papers, ACM, New York, NY, USA, 65--72. Google ScholarGoogle Scholar
  30. Mitchell, D. P. 1991. Spectrally optimal sampling for distribution ray tracing. 157--164.Google ScholarGoogle Scholar
  31. Ostromoukhov, V., Donohue, C., and Jodoin, P.-M. 2004. Fast hierarchical importance sampling with blue noise properties. In ACM SIGGRAPH 2004 Papers, ACM, New York, NY, USA, 488--495. Google ScholarGoogle Scholar
  32. Öztireli, A. C., Alexa, M., and Gross, M. 2010. Spectral sampling of manifolds. In ACM SIGGRAPH Asia 2010 papers, ACM, New York, NY, USA, SIGGRAPH ASIA '10, 168:1--168:8. Google ScholarGoogle Scholar
  33. Robert, C. P., and Casella, G. 2005. Monte Carlo Statistical Methods (Springer Texts in Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA. Google ScholarGoogle Scholar
  34. Roberts, G. O., and Rosenthal, J. S. 1998. Optimal scaling of discrete approximations to langevin diffusions. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 60, 1, 255--268.Google ScholarGoogle ScholarCross RefCross Ref
  35. Schmaltz, C., Gwosdek, P., Bruhn, A., and Weickert, J. 2010. Electrostatic halftoning. Computer Graphics Forum 29, 8, 2313--2327.Google ScholarGoogle ScholarCross RefCross Ref
  36. Secord, A. 2002. Weighted voronoi stippling. In Proc. int. symposium on Non-photorealistic animation and rendering, ACM, New York, NY, USA, 37--43. Google ScholarGoogle Scholar
  37. Shade, J., Cohen, M. F., and Mitchell, D. P. 2000. Tiling layered depth images. 231--242.Google ScholarGoogle Scholar
  38. Shepard, D. 1968. A two-dimensional interpolation function for irregularly-spaced data. In Proc. of ACM national conference, ACM, New York, NY, USA, 517--524. Google ScholarGoogle Scholar
  39. Surazhsky, V., Alliez, P., and Gotsman, C. 2003. Isotropic remeshing of surfaces: a local parameterization approach. In Proc. of 12th Int. Meshing Roundtable, 215--224.Google ScholarGoogle Scholar
  40. Trottenberg, U., Oosterlee, C. W., and Schuller, A. 2001. Multigrid. Accademic Press, London, UK. Google ScholarGoogle Scholar
  41. Wei, L.-Y. 2008. Parallel poisson disk sampling. In ACM SIGGRAPH 2008 papers, ACM, New York, NY, USA, 20:1--20:9. Google ScholarGoogle Scholar
  42. Wei, L.-Y. 2010. Multi-class blue noise sampling. In ACM SIGGRAPH 2010 papers, ACM, New York, NY, USA, 79:1--79:8. Google ScholarGoogle Scholar
  43. White, K. B., Cline, D., and Egbert, P. K. 2007. Poisson disk point sets by hierarchical dart throwing. Symposium on Interactive Ray Tracing 0, 129--132. Google ScholarGoogle Scholar
  44. Whitted, T. 1979. An improved illumination model for shaded display. ACM, New York, NY, USA, ACM SIGGRAPH 1979 papers, 14--. Google ScholarGoogle Scholar
  45. Yellot, J. I. 1983. Spectral consequences of photoreceptor sampling in the rhesus retina. 382--385.Google ScholarGoogle Scholar

Index Terms

  1. Blue-noise point sampling using kernel density model

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 30, Issue 4
          July 2011
          829 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2010324
          Issue’s Table of Contents

          Copyright © 2011 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 25 July 2011
          Published in tog Volume 30, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader