skip to main content
research-article

Interactive surface modeling using modal analysis

Published:22 October 2011Publication History
Skip Abstract Section

Abstract

We propose a framework for deformation-based surface modeling that is interactive, robust, and intuitive to use. The deformations are described by a nonlinear optimization problem that models static states of elastic shapes under external forces which implement the user input. Interactive response is achieved by a combination of model reduction, a robust energy approximation, and an efficient quasi-Newton solver. Motivated by the observation that a typical modeling session requires only a fraction of the full shape space of the underlying model, we use second and third derivatives of a deformation energy to construct a low-dimensional shape space that forms the feasible set for the optimization. Based on mesh coarsening, we propose an energy approximation scheme with adjustable approximation quality. The quasi-Newton solver guarantees superlinear convergence without the need of costly Hessian evaluations during modeling. We demonstrate the effectiveness of the approach on different examples including the test suite introduced in Sorkine [2008].

Skip Supplemental Material Section

Supplemental Material

References

  1. Adams, B., Ovsjanikov, M., Wand, M., Seidel, H.-P., and Guibas, L. J. 2008. Meshless modeling of deformable shapes and their motion. In Proceedings of Symposium on Computer Animation. 77--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. An, S. S., Kim, T., and James, D. L. 2008. Optimizing cubature for efficient integration of subspace deformations. Trans. Graph. 27, 5, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Au, O. K.-C., Tai, C.-L., Liu, L., and Fu, H. 2006. Dual Laplacian editing for meshes. IEEE Trans. Vis. Comput. Graph. 12, 386--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Baraff, D. and Witkin, A. 1998. Large steps in cloth simulation. In Proceedings of ACM SIGGRAPH. 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Barbič, J. and James, D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3, 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Barbič, J. and Popović, J. 2008. Real-time control of physically based simulations using gentle forces. ACM Trans. Graph. 27, 5, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ben-Chen, M., Weber, O., and Gotsman, C. 2009. Variational harmonic maps for space deformation. Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. 2006. PriMo: Coupled prisms for intuitive surface modeling. In Proceedings of Eurographics/Siggraph Symposium on Geometry Processing. 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Botsch, M., Pauly, M., Wicke, M., and Gross, M. 2007. Adaptive space deformations based on rigid cells. Comput. Graph. Forum 26, 3, 339--347.Google ScholarGoogle ScholarCross RefCross Ref
  10. Botsch, M. and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14, 1, 213--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 28--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph. 29, 38:1--38:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Choi, M. G. and Ko, H.-S. 2005. Modal warping: Real-time simulation of large rotational deformation and manipulation. IEEE Trans. Vis. Comput. Graph. 11, 1, 91--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ciarlet, P. G. 2000. Mathematical Elasticity - Volume III: Theory of Shells. Studies in Mathematics and Its Applications, vol. 29. North Holland.Google ScholarGoogle Scholar
  15. Garg, A., Grinspun, E., Wardetzky, M., and Zorin, D. 2007. Cubic Shells. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 91--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Gill, P. E., Murray, W., and Wright, M. H. 1982. Practical Optimization. Academic Press.Google ScholarGoogle Scholar
  17. Griewank, A., Juedes, D., and Utke, J. 1996. Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++. ACM Trans. Math. Softw. 22, 2, 131--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proceedings of the Symposium on Computer Animation. 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hauser, K. K., Shen, C., and O'Brien, J. F. 2003. Interactive deformation using modal analysis with constraints. In Proceedings of the Graphics Interface Conference. 247--256.Google ScholarGoogle Scholar
  20. Hildebrandt, K., Schulz, C., von Tycowicz, C., and Polthier, K. 2010. Eigenmodes of surface energies for shape analysis. In Proceedings of the Geometric Modeling and Processing Conference. 296--314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and Shum, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Huang, Q., Wicke, M., Adams, B., and Guibas, L. 2009. Shape decomposition using modal analysis. Comput. Graph. Forum 28, 2, 407--416.Google ScholarGoogle ScholarCross RefCross Ref
  23. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph.. 561--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kraevoy, V. and Sheffer, A. 2006. Mean-value geometry encoding. Int. J. Shape Model. 12, 1, 29--46.Google ScholarGoogle ScholarCross RefCross Ref
  26. Krysl, P., Lall, S., and Marsden, J. E. 2001. Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int. J. Numer. Meth. Engin. 51, 479--504.Google ScholarGoogle ScholarCross RefCross Ref
  27. Lévy, B. and Zhang, H. 2009. Spectral mesh processing. In ACM SIGGRAPH ASIA Courses. 1--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lipman, Y., Levin, D., and Cohen-Or, D. 2008. Green coordinates. ACM Trans. Graph. 27, 3, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rössl, C., and Peter Seidel, H. 2004. Differential coordinates for interactive mesh editing. In Proceedings of the Shape Modeling International Conference. 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Nealen, A., Sorkine, O., Alexa, M., and Cohen-Or, D. 2005. A sketch-based interface for detail-preserving mesh editing. ACM Trans. Graph. 24, 3, 1142--1147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Nocedal, J. and Wright, S. J. 2006. Numerical Optimization, 2nd ed. Springer.Google ScholarGoogle Scholar
  32. Pentland, A. and Williams, J. 1989. Good vibrations: modal dynamics for graphics and animation. In Proceedings of the ACM SIGGRAPH Conference. 215--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., and Guo, B. 2007. Mesh puppetry: cascading optimization of mesh deformation with inverse kinematics. ACM Trans. Graph. 26, 3, 81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sorkine, O. and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proceedings of the Symposium on Geometry Processing. 175--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sumner, R. W., Schmid, J., and Pauly, M. 2007. Embedded deformation for shape manipulation. Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proceedings of the ACM SIGGRAPH Conference. 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Vallet, B. and Lévy, B. 2008. Spectral geometry processing with manifold harmonics. Comput. Graph. Forum.Google ScholarGoogle Scholar
  39. Zhang, H., van Kaick, O., and Dyer, R. 2010. Spectral mesh processing. Comput. Graph. Forum 29, 6, 1865--1894.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Interactive surface modeling using modal analysis

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 30, Issue 5
          October 2011
          198 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2019627
          Issue’s Table of Contents

          Copyright © 2011 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 22 October 2011
          • Accepted: 1 April 2011
          • Revised: 1 February 2011
          • Received: 1 October 2010
          Published in tog Volume 30, Issue 5

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader