skip to main content
research-article

Fast simulation of skeleton-driven deformable body characters

Published:22 October 2011Publication History
Skip Abstract Section

Abstract

We propose a fast physically-based simulation system for skeleton-driven deformable body characters. Our system can generate realistic motions of self-propelled deformable body characters by considering the two-way interactions among the skeleton, the deformable body, and the environment in the dynamic simulation. It can also compute the passive jiggling behavior of a deformable body driven by a kinematic skeletal motion. We show that a well-coordinated combination of: (1) a reduced deformable body model with nonlinear finite elements, (2) a linear-time algorithm for skeleton dynamics, and (3) explicit integration can boost simulation speed to orders of magnitude faster than existing methods, while preserving modeling accuracy as much as possible. Parallel computation on the GPU has also been implemented to obtain an additional speedup for complicated characters. Detailed discussions of our engineering decisions for speed and accuracy of the simulation system are presented in the article. We tested our approach with a variety of skeleton-driven deformable body characters, and the tested characters were simulated in real time or near real time.

Skip Supplemental Material Section

Supplemental Material

References

  1. Albro, J. V., Sohl, G. A., Bobrow, J. E., and Park, F. C. 2000. On the computation of optimal high-dives. In Proceedings of the IEEE International Conference on Robotics and Automation. IEEE, 3958--3963.Google ScholarGoogle Scholar
  2. Baraff, D. 1996. Linear-time dynamics using lagrange multipliers. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'96). ACM, New York, 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baraff, D. and Witkin, A. 1998. Large steps in cloth simulation. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'98). ACM, New York, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barbič, J. and James, D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph 24, 3, 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graphics. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Basar, Y. and Weichert, D. 2000. Nonlinear Continuum Mechanics of Solids. Springer.Google ScholarGoogle Scholar
  7. Bonet, J. and Wood, R. D. 1997. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press.Google ScholarGoogle Scholar
  8. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graphics. 21, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bro-nielsen, M. and Cotin, S. 1996. Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graph. Forum. 57--66.Google ScholarGoogle Scholar
  10. Capell, S., Burkhart, M., Curless, B., Duchamp, T., and Popović, Z. 2005. Physically based rigging for deformable characters. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'05). ACM, New York, 301--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002a. Interactive skeleton-driven dynamic deformations. ACM Trans. Graph. 21, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002b. A multiresolution framework for dynamic deformations. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'02). ACM, New York, 41--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Choi, K.-J. and Ko, H.-S. 2002. Stable but responsive cloth. ACM Trans. Graph. 21, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Choi, M. G. and Ko, H.-S. 2005. Modal warping: real-time simulation of large rotational deformation and manipulation. IEEE Trans. Visual. Comput. Graph. 11, 91--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Comas, O., Taylor, Z. A., Allard, J., Ourselin, S., Cotin, S., and Passenger, J. 2008. Efficient nonlinear fem for soft tissue modelling and its gpu implementation within the open source framework sofa. In Proceedings of the 4th International Symposium on Biomedical Simulation (ISBMS'08). Springer-Verlag, Berlin, 28--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. de Farias, T. S. M., Almeida, M. W. S., Teixeira, J. M. X., Teichrieb, V., and Kelner, J. 2008. A high performance massively parallel approach for real time deformable body physics simulation. In Proceedings of the 20th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'08). 45--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 1997. Dynamic free-form deformations for animation synthesis. IEEE Trans. Visual. Comput. Graph. 3, 3, 201--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Featherstone, R. 1983. The calculation of robot dynamics using articulated-body inertias. Int. J. Robotics Res. 2, 1, 13--30.Google ScholarGoogle ScholarCross RefCross Ref
  19. Featherstone, R. 1987. Robot Dynamics Algorithms. Kluwer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Galoppo, N., Otaduy, M. A., Mecklenburg, P., Gross, M., and Lin, M. C. 2006. Fast simulation of deformable models in contact using dynamic deformation textures. In ACM SIGGRAPH /Eurographics Symposium on Computer Animation, M.-P. Cani and J. O'Brien, Eds., Eurographics Association, 73--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Galoppo, N., Otaduy, M. A., Tekin, S., Gross, M., and Lin, M. C. 2007. Soft articulated characters with fast contact handling. Comput. Graph. Forum 26, 3.Google ScholarGoogle ScholarCross RefCross Ref
  22. Golub, G. H. and Van Loan, C. F. 1996. Matrix Computations 3rd Ed. The Johns Hopkins University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Govindaraju, N. K., Redon, S., Lin, M. C., and Manocha, D. 2003. Cullide: interactive collision detection between complex models in large environments using graphics hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics hardware (HWWS'03). Eurographics Association, 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Grossman, R. L., Nerode, A., Ravn, A. P., and Rischel, H., Eds. 1993. Hybrid Systems. Lecture Notes in Computer Science, vol. 736, Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Hauser, K. K., Shen, C., and O'Brien, J. F. 2003. Interactive deformation using modal analysis with constraints. In Proceedings of the Graphics Interface Conference. Canadian Human-Computer Commnication Society, 247--256.Google ScholarGoogle Scholar
  26. Huang, J., Chen, L., Liu, X., and Bao, H. 2008. Efficient mesh deformation using tetrahedron control mesh. In Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling (SPM'08). ACM, New York, 241--247. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Irving, G., Schroeder, C., and Fedkiw, R. 2007. Volume conserving finite element simulations of deformable models. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'04). Eurographics Association, 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. James, D. L. and Pai, D. K. 1999. ArtDefo-accurate real time deformable objects. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'99), A. Rockwood, Ed., ACM Press, N.Y., 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. James, D. L. and Pai, D. K. 2002. Dyrt: dynamic response textures for real time deformation simulation with graphics hardware. ACM Trans. Graph. 21, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Kharevych, L., Mullen, P., Owhadi, H., and Desbrun, M. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Kim, J. and Pollard, N. S. 2011. Direct control of simulated non-human characters. IEEE Comput. Graph. Appl. 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Kim, T. and James, D. 2009. Skipping steps in deformable simulation with online model reduction. ACM Trans. Graph. 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28, 4, 1--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'02). ACM, New York, 49--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Müller, M. and Gross, M. 2004. Interactive virtual materials. In Proceedings of Graphics Interface (GI'04). Canadian Human-Computer Communications Society, 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Murray, R. M., Li, Z., and Sastry, S. S. 1994. A Mathematical Introduction to Robotic Manipulation. CRC Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically based deformable models in computer graphics. Comput. Graph. Forum 25, 4, 809--836.Google ScholarGoogle ScholarCross RefCross Ref
  40. Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Nesme, M., Payan, Y., and Faure, F. 2006. Animating shapes at arbitrary resolution with non-uniform stiffness. In Proceedings of the Eurographics Workshop in Virtual Reality Interaction and Physical Simulation (VRIPHYS). Eurographics.Google ScholarGoogle Scholar
  42. O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. O'Brien, J. F. and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'99). 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Park, F. C., Bobrow, J. E., and Ploen, S. R. 1995. A lie group formulation of robot dynamics. Int. J. Robotics Res. 14, 6, 609--618. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Pentland, A. and Williams, J. 1989. Good vibrations: modal dynamics for graphics and animation. In Proceedings of the 16th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'89). ACM, New York, 215--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Rathod, H. T., Venkatesudu, B., and Nagaraja, K. V. 2005. Gauss legendre quadrature formulas over a tetrahedron. Numer. Math. Part. Diff. Eqs. 22, 1, 197--219.Google ScholarGoogle ScholarCross RefCross Ref
  47. Rocchini, C. and Cignoni, P. 2000. Generating random points in a tetrahedron. J. Graph. Tools 5, 4, 9--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Schöberl, J. 1997. NETGEN: An advancing front 2D/3D-mesh generator based on abstract rules. Comput. Visual Sci. 1, 41--52.Google ScholarGoogle ScholarCross RefCross Ref
  49. Sederberg, T. W. and Parry, S. R. 1986. Free-form deformation of solid geometric models. SIGGRAPH Comput. Graph. 20, 4, 151--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., and Guo, B. 2008. Example-based dynamic skinning in real time. ACM Trans. Graph. 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Shinar, T., Schroeder, C., and Fedkiw, R. 2008. Two-way coupling of rigid and deformable bodies. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'08). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007. Hybrid simulation of deformable solids. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'07), M. Gleicher and D. Thalmann, Eds., Eurographics Association, 81--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Smith, O. K. 1961. Eigenvalues of a symmetric 3 × 3 matrix. Commu. ACM 4, 4, 168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Stern, A. and Desbrun, M. 2006. Discrete geometric mechanics for variational time integrators. In ACM SIGGRAPH Courses. ACM, New York, 75--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Sulejmanpašić, A. and Popović, J. 2005. Adaptation of performed ballistic motion. ACM Trans. Graph. 24, 1, 165--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Teran, J., Blemker, S., Hing, V. N. T., and Fedkiw, R. 2003. Finite volume methods for the simulation of skeletal muscle. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'03). Eurographics Association, 68--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005. Robust quasistatic finite elements and flesh simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'05). ACM Press, New York, 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'87). ACM, New York, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Terzopoulos, D. and Witkin, A. 1988. Physically based models with rigid and deformable components. IEEE Comput. Graphi. Appli. 8, 6, 41--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Turner, R. and Thalmann, D. 1993. The elastic surface layer model for animated character construction. In Proceedings of Computer Graphics International Conference. Springer-Verlag, 399--412.Google ScholarGoogle Scholar
  61. van de Panne, M. and Lamouret, A. 1995. Guided optimization for balanced locomotion. In Proceedings of the Computer Animation and Simulation. D. Terzopoulos and D. Thalmann, Eds., Springer-Verlag, 165--177.Google ScholarGoogle Scholar
  62. Wojtan, C. and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Zhang, X. and Kim, Y. J. 2007. Interactive collision detection for deformable models using streaming AABBs. IEEE Trans. Visual. Comput. Graph. 13, 2, 318--329. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Zordan, V. B. and Hodgins, J. K. 2002. Motion capture-driven simulations that hit and react. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'02). ACM, New York, 89--96. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fast simulation of skeleton-driven deformable body characters

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 30, Issue 5
          October 2011
          198 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2019627
          Issue’s Table of Contents

          Copyright © 2011 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 22 October 2011
          • Accepted: 1 April 2011
          • Revised: 1 January 2011
          • Received: 1 January 2010
          Published in tog Volume 30, Issue 5

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader