skip to main content
research-article

Physically-based simulation of rainbows

Published:02 February 2012Publication History
Skip Abstract Section

Abstract

In this article, we derive a physically-based model for simulating rainbows. Previous techniques for simulating rainbows have used either geometric optics (ray tracing) or Lorenz-Mie theory. Lorenz-Mie theory is by far the most accurate technique as it takes into account optical effects such as dispersion, polarization, interference, and diffraction. These effects are critical for simulating rainbows accurately. However, as Lorenz-Mie theory is restricted to scattering by spherical particles, it cannot be applied to real raindrops which are nonspherical, especially for larger raindrops. We present the first comprehensive technique for simulating the interaction of a wavefront of light with a physically-based water drop shape. Our technique is based on ray tracing extended to account for dispersion, polarization, interference, and diffraction. Our model matches Lorenz-Mie theory for spherical particles, but it also enables the accurate simulation of nonspherical particles. It can simulate many different rainbow phenomena including double rainbows and supernumerary bows. We show how the nonspherical raindrops influence the shape of the rainbows, and we provide a simulation of the rare twinned rainbow, which is believed to be caused by nonspherical water drops.

Skip Supplemental Material Section

Supplemental Material

References

  1. Airy, G. 1838. On the intensity of light in the neighbourhood of a caustic. Trans. Cambridge Philos. Soc. 6, 379--403.Google ScholarGoogle Scholar
  2. Beard, K. V. and Chuang, C. 1987. A new model for the equilibrium shape of raindrops. J. Atmosph. Sci. 44, 11, 1509--1524.Google ScholarGoogle ScholarCross RefCross Ref
  3. Beard, K. V., Kubesh, R. J., and III, H. T. O. 1991. Laboratory measurements of small raindrop distortion. part i: Axis ratios and fall behavior. J. Atmosph. Sci. 48, 5, 698--710.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bohren, C. and Huffmann, D. 1983. Absorption and Scattering of Light by Small Particles. Wiley.Google ScholarGoogle Scholar
  5. Bringi, V., Chandrasekar, V., and Xiao, R. 1991. Raindrop axis ratios and size distributions in florida rainshafts:an assessment of multiparameter radar algorithms. IEEE Trans. Geosci. Remote Sens. 36, 3, 703--715.Google ScholarGoogle ScholarCross RefCross Ref
  6. Collins, S. 1994. Adaptive splatting for specular to diffuse light transport. In Proceedings of the 5th Eurographics Workshop on Rendering. 119--135.Google ScholarGoogle Scholar
  7. Frisvad, J. R., Christensen, N. J., and Falster, P. 2007a. The aristotelian rainbow: From philosophy to computer graphics. In Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia (Graphite'07). ACM, New York, 119--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Frisvad, J. R., Christensen, N. J., and Jensen, H. W. 2007b. Computing the scattering properties of participating media using lorenz-mie theory. In ACM SIGGRAPH 2007 Papers. ACM, New York, 60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gedzelman, S. 2008. Simulating rainbows in their atmospheric environment. Appl. Optics 47, 34, 176--181.Google ScholarGoogle ScholarCross RefCross Ref
  10. Giancoli, D. C. 1989. Physics for Scientists and Engineers. Prentice Hall.Google ScholarGoogle Scholar
  11. Gondek, J. S., Meyer, G. W., and Newman, J. G. 1994. Wavelength dependent reflectance functions. In Proceedings of the SIGGRAPH Conference. ACM, New York, 213--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Greenler, R. 1990. Rainbows, Halos, and Glories. Cambridge University Press.Google ScholarGoogle Scholar
  13. Guy, S. and Soler, C. 2004. Graphics gems revisited. ACM Trans. Graph.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Heckbert, P. S. and Hanrahan, P. 1984. Beam tracing polygonal objects. SIGGRAPH Comput. Graph. 18, 119--127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jackèl, D. and Walter, B. 1997. Modeling and rendering of the atmosphere using Mie-scattering. Comput. Graph. Forum 16, 4, 201--210.Google ScholarGoogle ScholarCross RefCross Ref
  16. Jones, R. C. 1941. A new calculus for the treatment of optical systems. J. Opt. Soc. Am. 31, 7, 488--493.Google ScholarGoogle ScholarCross RefCross Ref
  17. Laven, P. 2003. Simulation of rainbows, coronas, and glories by use of Mie theory. Appl. Optics 42, 3, 436--444.Google ScholarGoogle ScholarCross RefCross Ref
  18. Lee, R. L. 1998. Mie theory, Airy theory, and the natural rainbow. Appl. Optics 37, 9, 1506--1519.Google ScholarGoogle ScholarCross RefCross Ref
  19. Lee, R. L. and Fraser, A. B. 2001. The Rainbow Bridge: Rainbows in Art, Myth, and Science. Pennsylvania State University Press.Google ScholarGoogle Scholar
  20. Lipson, S., Lipson, H., and Tanhauser, D. 1995. Optical Physics, 3rd Ed. Cambridge.Google ScholarGoogle Scholar
  21. Lorenz, L. 1890. Lysbevgelser i og uden for en af plane lysblger belyst kugle. det kongelig danske videnskabernes selskabs skrifter. Rkke, Naturvidenskabelig og Mathematisk Afdeling 6, 1, 262.Google ScholarGoogle Scholar
  22. Lynch, D. and Livingston, W. 2001. Color and Light in Nature, 2nd Ed. Cambridge University Press.Google ScholarGoogle Scholar
  23. Mie, G. 1908. Beitr age zur optik tr uber medien, speziell kolloidaler metall osungen. Annalen der Physik 25, 3, 377--445.Google ScholarGoogle ScholarCross RefCross Ref
  24. Minnaert, M. 1993. Light and Colour in the Outdoors. Springer.Google ScholarGoogle Scholar
  25. Mishchenko, M. I., Hovenier, J. W., and Travis, L. D. 2000. Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. Academic Press.Google ScholarGoogle Scholar
  26. Musgrave, F. K. 1989. Prisms and rainbows: A dispersion model for computer graphics. In Proceedings of the Graphics Interface Conference. 227--234.Google ScholarGoogle Scholar
  27. Narasimhan, S. G. and Nayar, S. K. 2003. Shedding light on the weather. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Vol. 1. 665--672. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. nVIDIA. 2004. Rainbows and fogbows: adding natural phenomena. Sdk white paper.Google ScholarGoogle Scholar
  29. Pope, R. and Fry, E. 1997. Absorption spectrum (380-700 nm) of pure water. ii. integrating cavity measurements. Appl. Optics 36, 33, 8710--8723.Google ScholarGoogle ScholarCross RefCross Ref
  30. Riley, K., Ebert, D. S., Kraus, M., Tessendorf, J., and Hansen, C. 2004. Efficient rendering of atmospheric phenomena. In Proceedings of the Eurographics Symposium on Rendering, D. Fellner and S. Spencer, Eds., 375--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Rushmeier, H. 1995. Input for participating media. Realistic input for realistic images. In ACM SIGGRAPH'95 Course Notes. Also appeared in the ACM SIGGRAPH '98 Course Notes - A Basic Guide to Global Illumination.Google ScholarGoogle Scholar
  32. Taflove, A. 1998. Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House Inc.Google ScholarGoogle Scholar
  33. Tannenbaum, D. C., Tannenbaum, P., and Wozny, M. J. 1994. Polarization and birefringency considerations in rendering. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'94). ACM, New York, 221--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Umashankar, K. and Taflove, A. 1982. A novel method to analyze electromagnetic scattering of complex objects. IEEE Trans. Electromagn. Compat. 24, 4, 397--405.Google ScholarGoogle ScholarCross RefCross Ref
  35. van de Hulst, H. C. 1957. Light Scattering by Small Particles. Dover Publications Inc.Google ScholarGoogle Scholar
  36. Villermaux, E. and Bossa, B. 2009. Nature Phys. 5, 697--702.Google ScholarGoogle Scholar
  37. Wilkie, A., Tobler, R. F., and Purgathofer, W. 2001. Combined rendering of polarization and fluorescence effects. In Proceedings of the 12th Eurographics Workshop on Rendering Techniques. Springer, 197--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wolff, L. B. and Kurlander, D. J. 1990. Ray tracing with polarization parameters. IEEE Comput. Graph. Appl. 10, 44--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Xu, F., Lock, J. A., and Tropea, C. 2010. Debye series for light scattering by a spheroid. J. Opt. Soc. Am. A 27, 4, 671--686.Google ScholarGoogle ScholarCross RefCross Ref
  40. Yang, P. and Liou, K. N. 1995. Light scattering by hexagonal ice crystals: Comparison of finite-difference time domain and geometric optics models. J. Opt. Soc. Amer. 12, 162--176.Google ScholarGoogle ScholarCross RefCross Ref
  41. Yang, P. and Liou, K. N. 1996. Finite-Difference time domain method for light scattering by small ice crystals in three-dimensional space. J. Opt. Soc. Amer. 13, 2072--2085.Google ScholarGoogle ScholarCross RefCross Ref
  42. Yee, K. 1966. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Trans. Anten. Propagat. 14, 3, 302--307.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Physically-based simulation of rainbows

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 31, Issue 1
            January 2012
            149 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2077341
            Issue’s Table of Contents

            Copyright © 2012 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 2 February 2012
            • Accepted: 1 July 2011
            • Received: 1 May 2011
            Published in tog Volume 31, Issue 1

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader