skip to main content
research-article

Interactive sound propagation using compact acoustic transfer operators

Published:02 February 2012Publication History
Skip Abstract Section

Abstract

We present an interactive sound propagation algorithm that can compute high orders of specular and diffuse reflections as well as edge diffractions in response to moving sound sources and a moving listener. Our formulation is based on a precomputed acoustic transfer operator, which we compactly represent using the Karhunen-Loeve transform. At runtime, we use a two-pass approach that combines acoustic radiance transfer with interactive ray tracing to compute early reflections as well as higher-order reflections and late reverberation. The overall approach allows accuracy to be traded off for improved performance at runtime, and has a low memory overhead. We demonstrate the performance of our algorithm on different scenarios, including an integration of our algorithm with Valve's Source game engine.

Skip Supplemental Material Section

Supplemental Material

tp207_12.mp4

References

  1. Alarcao, D., Santos, D., and Coelho, J. L. B. 2009. An auralization system for real time room acoustics simulation. In Proceedings of the Tecniacustica Conference.Google ScholarGoogle Scholar
  2. Allen, J. B. and Berkley, D. A. 1979. Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Amer. 65, 4, 943--950.Google ScholarGoogle ScholarCross RefCross Ref
  3. Antani, L., Chandak, A., Taylor, M., and Manocha, D. 2011. Direct-to-Indirect acoustic radiance transfer. IEEE Trans. Vis. Comput. Graph. (To appear). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bertram, M., Deines, E., Mohring, J., Jegorovs, J., and Hagen, H. 2005. Phonon tracing for auralization and visualization of sound. In Proceedings of the IEEE Visualization Conference. 151--158.Google ScholarGoogle Scholar
  5. Bonneel, N., Drettakis, G., Tsingos, N., Viaud-Delmon, I., and James, D. L. 2008. Fast modal sounds with scalable frequency-domain synthesis. ACM Trans. Graph. 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Botteldooren, D. 1995. Finite difference time domain simulation of low frequency room acoustic problems. J. Acoust. Soc. Amer. 98, 8, 3302--3308.Google ScholarGoogle ScholarCross RefCross Ref
  7. Chadwick, J., An, S., and James, D. L. 2009. Harmonic shells: A practical nonlinear sound model for near-rigid thin shells. ACM Trans. Graph. 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chandak, A., Antani, L., Taylor, M., and Manocha, D. 2009. Fastv: From-Point visibility culling on complex models. Comput. Graph. Forum 28, 1237--1246.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Ciskowski, R. and Brebbia, C. 1991. Boundary Element Methods in Acoustics. Computational Mechanics Publications and Elsevier Applied Science.Google ScholarGoogle Scholar
  10. Foale, C. and Vamplew, P. 2007. Portal-Based sound propagation for first-person computer games. In Proceedings of the Australasian Conference on Interactive Entertainment. 9:1--9:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Funkhouser, T., Carlbom, I., Elko, G., Pingali, G., Sondhi, M., and West, J. 1998. A beam tracing approach to acoustic modeling for interactive virtual environments. In Proceedings of the SIGGRAPH Conference. 21--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Goral, C. M., Torrance, K. E., Greenberg, D. P., and Battaile, B. 1984. Modeling the interaction of light between diffuse surfaces. Comput. Graph. 18, 3, 213--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hašan, M., Pellacini, F., and Bala, K. 2006. Direct-to-Indirect transfer for cinematic relighting. ACM Trans. Graph. 25, 3, 1089--1097. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ihlenburg, F. 1998. Finite Element Analysis of Acoustic Scattering. Springer.Google ScholarGoogle Scholar
  15. James, D. L., Barbič, J., and Pai, D. K. 2006. Precomputed acoustic transfer: Output-Sensitive, accurate sound generation for geometrically complex vibration sources. ACM Trans. Graph. 25, 3, 987--995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kajiya, J. T. 1986. The rendering equation. Comput. Graph. 20, 4, 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kapralos, B., Jenkin, M., and Milios, E. 2004. Sonel mapping: Acoustic modeling utilizing an acoustic version of photon mapping. In Proceedings of the IEEE International Workshop on Haptics Audio Visual Environments and their Applications.Google ScholarGoogle Scholar
  18. Kristensen, A. W., Akenine-Möller, T., and Jensen, H. W. 2005. Precomputed local radiance transfer for real-time lighting design. ACM Trans. Graph. 24, 3, 1208--1215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kuttruff, H. 1991. Room Acoustics. Elsevier Science Publishing Ltd.Google ScholarGoogle Scholar
  20. Kuttruff, H. 1995. A simple iteration scheme for the computation of decay constants in enclosures with diffusely reflecting boundaries. J. Acoust. Soc. Amer. 98, 1, 288--293.Google ScholarGoogle ScholarCross RefCross Ref
  21. Kuttruff, H. K. 1993. Auralization of impulse responses modeled on the basis of ray-tracing results. J. Audio Engin. Soc. 41, 11, 876--880.Google ScholarGoogle Scholar
  22. Laine, S., Siltanen, S., Lokki, T., and Savioja, L. 2009. Accelerated beam tracing algorithm. Appl. Acoust. 70, 1, 172--181.Google ScholarGoogle ScholarCross RefCross Ref
  23. Lehtinen, J., Zwicker, M., Turquin, E., Kontkanen, J., Durand, F., Sillion, F. X., and Aila, T. 2008. A meshless hierarchical representation for light transport. ACM Trans. Graph. 27, 3, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lentz, T., Schroeder, D., Vorlander, M., and Assenmacher, I. 2007. Virtual reality system with integrated sound field simulation and reproduction. EURASIP J. Appl. Signal Process. 2007, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Loève, M. 1978. Probability Theory Vol. II. Springer.Google ScholarGoogle Scholar
  26. Moeck, T., Bonneel, N., Tsingos, N., Drettakis, G., Viaud-Delmon, I., and Aloza, D. 2007. Progressive perceptual audio rendering of complex scenes. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Nosal, E.-M., Hodgson, M., and Ashdown, I. 2004. Improved algorithms and methods for room sound-field prediction by acoustical radiosity in arbitrary polyhedral rooms. J. Acoust. Soc. Amer. 116, 2, 970--980.Google ScholarGoogle ScholarCross RefCross Ref
  28. Raghuvanshi, N. and Lin, M. C. 2006. Interactive sound synthesis for large scale environments. In Proceedings of the Symposium on Interactive 3D Graphics and Games. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Raghuvanshi, N., Narain, R., and Lin, M. C. 2009. Efficient and accurate sound propagation using adaptive rectangular decomposition. IEEE Trans. Vis. Comput. Graph. 15, 789--801. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Raghuvanshi, N., Snyder, J., Mehra, R., Lin, M., and Govindaraju, N. 2010. Precomputed wave simulation for real-time sound propagation of dynamic sources in complex scenes. ACM Trans. Graph. 29, 4, 68:1--68:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Savioja, L., Huopaniemi, J., Lokki, T., and Väänänen, R. 1999. Creating interactive virtual acoustic environments. J. Audio Engin. Soc. 47, 9, 675--705.Google ScholarGoogle Scholar
  32. Savioja, L., Rinne, T., and Takala, T. 1994. Simulation of room acoustics with a 3-D finite difference mesh. In Proceedings of the International Computer Music Conference. 463--466.Google ScholarGoogle Scholar
  33. Siltanen, S., Lokki, T., Kiminki, S., and Savioja, L. 2007. The room acoustic rendering equation. J. Acoust. Soc. Amer. 122, 3, 1624--1635.Google ScholarGoogle ScholarCross RefCross Ref
  34. Siltanen, S., Lokki, T., and Savioja, L. 2009. Frequency domain acoustic radiance transfer for real-time auralization. In Proceedings of Acta Acustica united with Acustica 95, 106--117.Google ScholarGoogle Scholar
  35. Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph. 21, 3, 527--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Stavrakis, E., Tsingos, N., and Calamia, P. 2008. Topological sound propagation with reverberation graphs. In Proceedings of Acta Acustica united with Acustica.Google ScholarGoogle Scholar
  37. Stephenson, U. M. 2010. An analytically derived sound particle diffraction model. In Proceedings of Acta Acustica united with Acustica 96, 1051--1068.Google ScholarGoogle ScholarCross RefCross Ref
  38. Stephenson, U. M. and Svensson, U. P. 2007. An improved energetic approach to diffraction based on the unvertainty principle. In Proceedings of the 19th International Congress on Acoustics (ICA).Google ScholarGoogle Scholar
  39. Summers, J. E., Torres, R. R., and Shimizu, Y. 2004. Statistical-acoustics models of energy decay in systems of coupled rooms and their relation to geometrical acoustics. J. Acoust. Soc. Amer. 116, 2, 958--969.Google ScholarGoogle ScholarCross RefCross Ref
  40. Svensson, U. P., Fred, R. I., and Vanderkooy, J. 1999. An analytic secondary source model of edge diffraction impulse responses. J. Acoust. Soc. Amer. 106, 2331--2344.Google ScholarGoogle ScholarCross RefCross Ref
  41. Taylor, M. T., Chandak, A., Antani, L., and Manocha, D. 2009. Resound: interactive sound rendering for dynamic virtual environments. In Proceedings of the ACM Multimedia Conference. 271--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Tsingos, N. 2007. Perceptually-Based auralization. In Proceedings of the International Congress on Acoustics.Google ScholarGoogle Scholar
  43. Tsingos, N. 2009. Precomputing geometry-based reverberation effects for games. In Proceedings of the Audio Engineering Society Conference: Audio for Games.Google ScholarGoogle Scholar
  44. Tsingos, N., Funkhouser, T., Ngan, A., and Carlbom, I. 2001. Modeling acoustics in virtual environments using the uniform theory of diffraction. In Proceedings of the SIGGRAPH Conference. 545--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Tsingos, N., Gallo, E., and Drettakis, G. 2004. Perceptual audio rendering of complex virtual environments. ACM Trans. Graph. 23, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Tsingos, N. and Gascuel, J.-D. 1997. A general model for the simulation of room acoustics based on hierachical radiosity. In Proceedings of the ACM SIGGRAPH 97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Wallace, J. R., Cohen, M. F., and Greenberg, D. P. 1987. A two-pass solution to the rendering equation: A synthesis of ray tracing and radiosity methods. Comput. Graph. 21, 4, 311--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Wang, Ye; Vilermo, M. 2003. Modified discrete cosine transform: Its implications for audio coding and error concealment. J. Audio Engin. Soc 51, 1/2, 52--61.Google ScholarGoogle Scholar

Index Terms

  1. Interactive sound propagation using compact acoustic transfer operators

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 31, Issue 1
            January 2012
            149 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2077341
            Issue’s Table of Contents

            Copyright © 2012 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 2 February 2012
            • Revised: 1 August 2011
            • Accepted: 1 August 2011
            • Received: 1 June 2011
            Published in tog Volume 31, Issue 1

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader