Abstract
We present an algorithm for the simulation of incompressible fluid phenomena that is computationally efficient and leads to visually convincing simulations with far fewer degrees of freedom than existing approaches. Rather than using an Eulerian grid or Lagrangian elements, we represent vorticity and velocity using a basis of global functions defined over the entire simulation domain. We show that choosing Laplacian eigenfunctions for this basis provides benefits, including correspondence with spatial scales of vorticity and precise energy control at each scale. We perform Galerkin projection of the Navier-Stokes equations to derive a time evolution equation in the space of basis coefficients. Our method admits closed-form solutions on simple domains but can also be implemented efficiently on arbitrary meshes.
Supplemental Material
Available for Download
Supplemental videos, for, Fluid simulation using laplacian eigenfunctions
- Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. In ACM SIGGRAPH 2007 Papers. ACM, New York. Google Scholar
Digital Library
- Agrachev, A. A. and Sarychev, A. V. 2005. Navier-Stokes equations: Controllability by means of low modes forcing. J. Math. Fluid Mechan. 7, 1, 108--152.Google Scholar
Cross Ref
- Angelidis, A., Neyret, F., Singh, K., and Nowrouzezahrai, D. 2006. A controllable, fast and stable basis for vortex based smoke simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'06). Eurographics Association, 25--32. Google Scholar
Digital Library
- Arnold, V. I. 1966. Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16.Google Scholar
- Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. In ACM SIGGRAPH 2009 Papers. ACM, New York, 53:1--53:9. Google Scholar
Digital Library
- Bridson, R., Houriham, J., and Nordenstam, M. 2007. Curl-Noise for procedural fluid flow. In ACM SIGGRAPH 2007 Papers. ACM, New York. Google Scholar
Digital Library
- Cheng, D. K. 1999. Field and Wave Electromagnetics. Addison-Wesley, Reading, MA.Google Scholar
- de Witt, T. 2010. Fluid simulation in bases of Laplacian eigenfunctions. M.S. thesis, University of Toronto, Toronto, ON, Canada.Google Scholar
- Desbrun, M. and Gascuel, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Proceedings of the Eurographics Workshop on Computer Animation and Simulation'96. Springer, 61--76. Google Scholar
Digital Library
- Desbrun, M., Kanso, E., and Tong, Y. 2005. Discrete differential forms for computational modeling. In ACM SIGGRAPH 2005 Courses. ACM, New York. Google Scholar
Digital Library
- Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M. 2007. Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26. Google Scholar
Digital Library
- Fattal, R. and Lischinski, D. 2004. Target-driven smoke animation. In ACM SIGGRAPH 2004 Papers. ACM, New York, 441--448. Google Scholar
Digital Library
- Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, 15--22. Google Scholar
Digital Library
- Foster, N. and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models Image Process. 58, 471--483. Google Scholar
Digital Library
- Gamito, M. N., Lopes, P. F., and Gomes, M. R. 1995. Two-Dimensional simulation of gaseous phenomena using vortex particles. In Proceedings of the 6th Eurographics Workshop on Computer Animation and Simulation. Springer, 3--15.Google Scholar
- Gupta, M. and Narasimhan, S. G. 2007. Legendre fluids: A unified framework for analytic reduced space modeling and rendering of participating media. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'07). Eurographics Association, 17--25. Google Scholar
Digital Library
- Gustafson, K. and Hartman, R. 1983. Divergence-Free bases for finite element schemes in hydrodynamics. SIAM J. Numer. Anal. 20, 697--721.Google Scholar
Digital Library
- Lentine, M., Zheng, W., and Fedkiw, R. 2010. A novel algorithm for incompressible flow using only a coarse grid projection. In ACM SIGGRAPH 2010 Papers. ACM, New York, 114:1--114:9. Google Scholar
Digital Library
- Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. In ACM SIGGRAPH 2004 Papers. ACM, New York, 457--462. Google Scholar
Digital Library
- Marsden, J. E. and Ratiu, T. S. 1999. Introduction to Mechanics and Symmetry, 2nd ed. Texts in Applied Mathematics. No. 17, Springer, New York.Google Scholar
- McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. In ACM SIGGRAPH 2004 Papers. ACM, New York, 449--456. Google Scholar
Digital Library
- Mullen, P., Crane, K., Pavlov, D., Tong, Y., and Desbrun, M. 2009. Energy-Preserving integrators for fluid animation. In ACM SIGGRAPH 2009 Papers. ACM, New York, 38:1--38:8. Google Scholar
Digital Library
- Müller, M., Charypar, D., and Gross, M. 2003. Particle-Based fluid simulation for interactive applications. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'03). Eurographics Association, 154--159. Google Scholar
Digital Library
- Orszag, S. A. 1969. Numerical methods for the simulation of turbulence. Phys. Fluids 12, 250--257.Google Scholar
Cross Ref
- Orszag, S. A. and Patterson, G. 1972. Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28, 76--79.Google Scholar
Cross Ref
- Park, S. I. and Kim, M. J. 2005. Vortex fluid for gaseous phenomena. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'05). ACM, New York, 261--270. Google Scholar
Digital Library
- Poincaré, H. 1901. Sur une forme nouvelle des équations de la méchanique. C.R. Acad. Sci. 132, 369--371.Google Scholar
- Rogallo, R., Moin, P., and Reynolds, W. 1981. Numerical experiments in homogeneous turbulence. NASA TM-81315.Google Scholar
- Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An unconditionally stable MacCormack method. J. Sci. Comput. 35, 350--371. Google Scholar
Digital Library
- Silberman, I. 1954. Planetary waves in the atmosphere. J. Meteor. 11, 27--34.Google Scholar
Cross Ref
- Stam, J. 1999. Stable fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co., New York, 121--128. Google Scholar
Digital Library
- Stam, J. 2002. A simple fluid solver based on the FFT. J. Graph. Tools 6, 43--52. Google Scholar
Digital Library
- Stam, J. and Fiume, E. 1993. Turbulent wind fields for gaseous phenomena. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, 369--376. Google Scholar
Digital Library
- Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. In ACM SIGGRAPH 2006 Papers. ACM, New York, 826--834. Google Scholar
Digital Library
- Treuille, A., McNamara, A., Popović, Z., and Stam, J. 2003. Keyframe control of smoke simulations. In ACM SIGGRAPH 2003 Papers. ACM, New York, 716--723. Google Scholar
Digital Library
- Twigg, C. D. and James, D. L. 2008. Backward steps in rigid body simulation. In ACM SIGGRAPH 2008 Papers. ACM, New York, 25:1--25:10. Google Scholar
Digital Library
- Weissmann, S. and Pinkall, U. 2010. Filament-Based smoke with vortex shedding and variational reconnection. In ACM SIGGRAPH 2010 Papers. ACM, New York, 115:1--115:12. Google Scholar
Digital Library
- Wicke, M., Stanton, M., and Treuille, A. 2009. Modular bases for fluid dynamics. In ACM SIGGRAPH 2009 Papers. ACM, New York, 39:1--39:8. Google Scholar
Digital Library
- Yudovich, V. I. 1963. Non-Stationary flow of an ideal incompressible liquid. USSR Comput. Math. Math. Phys. 3, 6, 1407--1456.Google Scholar
Cross Ref
- Zhu, Y. and Bridson, R. 2005. Animating sand as a fluid. In ACM SIGGRAPH 2005 Papers. ACM, New York, 965--972. Google Scholar
Digital Library
Index Terms
Fluid simulation using Laplacian eigenfunctions
Recommendations
Multiple-Fluid SPH Simulation Using a Mixture Model
This article presents a versatile and robust SPH simulation approach for multiple-fluid flows. The spatial distribution of different phases or components is modeled using the volume fraction representation, the dynamics of multiple-fluid flows is ...
Explosion Simulation Using Compressible Fluids
ICVGIP '08: Proceedings of the 2008 Sixth Indian Conference on Computer Vision, Graphics & Image ProcessingWe propose a novel physically based method to simulate explosions and other compressible fluid phenomena. Themethod uses compressible Navier Stokes equations for modeling the explosion with a Semi-Lagrangian integration method. The proposed integration ...
A two-continua approach to Eulerian simulation of water spray
Physics based simulation of the dynamics of water spray - water droplets dispersed in air - is a means to increase the visual plausibility of computer graphics modeled phenomena such as waterfalls, water jets and stormy seas. Spray phenomena are ...





Comments