skip to main content
research-article

Specular reflection from woven cloth

Published:02 February 2012Publication History
Skip Abstract Section

Abstract

The appearance of a particular fabric is produced by variations in both large-scale reflectance and small-scale texture as the viewing and illumination angles change across the surface. This article presents a study of the reflectance and texture of woven cloth that aims to identify and model important optical features of cloth appearance. New measurements are reported for a range of fabrics including natural and synthetic fibers as well as staple and filament yarns. A new scattering model for woven cloth is introduced that describes the reflectance and the texture based on an analysis of specular reflection from the fibers. Unlike data-based models, our procedural model doesn't require image data. It can handle a wide range of fabrics using a small set of physically meaningful parameters that describe the characteristics of the fibers, the geometry of the yarns, and the pattern of the weave. The model is validated against the measurements and evaluated by comparisons to high-resolution video of the real fabrics and to BTF models of two of the fabrics.

Skip Supplemental Material Section

Supplemental Material

tp108_12.mp4

References

  1. Adabala, N., Magnenat-Thalmann, N., and Fei, G. 2003. Visualization of woven cloth. In Proceedings of the Eurographics Workshop on Rendering. 178--185. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Arfken, G. B., Weber, H. J., and Weber, H.-J. 1995. In Mathematical Methods for Physicists, 4th Ed. Academic Press, Chapter 11.5.Google ScholarGoogle Scholar
  3. Ashikhmin, M., Premože, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In Proceedings of the SIGGRAPH Conference. 65--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Buck, G. S. and McCord, F. A. 1949. Luster and cotton. Textile Res. J. 19, 11, 715--754.Google ScholarGoogle ScholarCross RefCross Ref
  5. Dana, K. J., van Ginneken, B., Nayar, S. K., and Koenderink, J. J. 1999. Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18, 1, 1--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Daubert, K., Lensch, H. P. A., Heidrich, W., and Seidel, H.-P. 2001. Efficient cloth modeling and rendering. In Proceedings of the Eurographics Workshop on Rendering. 63--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dong, Y., Wang, J., Tong, X., Snyder, J., Lan, Y., Ben-Ezra, M., and Guo, B. 2010. Manifold bootstrapping for SVBRDF capture. ACM Trans. Graph. 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Drago, F. and Chiba, N. 2004. Painting canvas synthesis. Vis. Comput. 20, 5, 314--328. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dutré, P., Bekaert, P., and Bala, K. 2003. Advanced Global Illumination. A K Peters, Natick, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Evans, M., Hastings, N., and Peacock, B. 2000. Statistical Distributions, 3rd Ed. Wiley-Interscience, New York, Chapter 41.Google ScholarGoogle Scholar
  11. Hanrahan, P. and Krueger, W. 1993. Reflection from layered surfaces due to subsurface scattering. In Proceedings of the SIGGRAPH Conference. 165--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Havran, V., Filip, J., and Myszkowski, K. 2010. Bidirectional texture function compression based on multi-level vector quantization. Comp. Graph. Forum 29, 1, 175--190.Google ScholarGoogle ScholarCross RefCross Ref
  13. Hunter, R. S. and Herald, R. W. 1987. The Measurement of Appearance, 2nd Ed. Wiley-Interscience, New York.Google ScholarGoogle Scholar
  14. Irawan, P. 2007. Appearance of woven cloth. Ph.D. thesis, Cornell University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Irawan, P. and Marschner, S. R. 2006. A simple, accurate texture model for woven cotton cloth. Tech. rep. PCG-06-01, Cornell University.Google ScholarGoogle Scholar
  16. Jakob, W. 2011. Mitsuba physically based renderer. mitsuba-renderer.org.Google ScholarGoogle Scholar
  17. Kajiya, J. T. and Kay, T. L. 1989. Rendering fur with three dimensional textures. In Proceedings of the SIGGRAPH Conference. 271--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kautz, J., Boulos, S., and Durand, F. 2007. Interactive editing and modeling of bidirectional texture functions. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lu, R., Koenderink, J. J., and Kappers, A. M. L. 1998. Optical properties (bidirectional reflection distribution functions) of velvet. Appl. Opt. 37, 25, 5974--5984.Google ScholarGoogle ScholarCross RefCross Ref
  20. Lu, R., Koenderink, J. J., and Kappers, A. M. L. 2000. Specularities on surfaces with tangential hairs or grooves. Comput. Vis. Image Underst. 78, 3, 320--335. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Marschner, S. R., Jensen, H. W., Cammarano, M., Worley, S., and Hanrahan, P. 2003. Light scattering from human hair fibers. ACM Trans. Graph. 22, 3, 780--791. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Marschner, S. R., Westin, S. H., Arbree, A., and Moon, J. T. 2005. Measuring and modeling the appearance of finished wood. ACM Trans. Graph. 24, 3, 727--734. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. McAllister, D. K., Lastra, A., and Heidrich, W. 2002. Efficient rendering of spatial bi-directional reflectance distribution functions. In Proceedings of the Conference on Graphics Hardware. 79--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Müller, G., Bendels, G. H., and Klein, R. 2005. Rapid synchronous acquisition of geometry and BTF for cultural heritage artefacts. In Proceedings of the Symposium on Virtual Reality, Archaeology and Cultural Heritage. 13--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Müller, G., Meseth, J., Sattler, M., Sarlette, R., and Klein, R. 2004. Acquisition, synthesis and rendering of bidirectional texture functions. In Eurographics 2004, State of the Art Reports. 69--94.Google ScholarGoogle Scholar
  26. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental analysis of BRDF models. In Proceedings of the Eurographics Symposium on Rendering. 117--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. 1977. Geometric considerations and nomenclature for reflectance. Monograph 161, National Bureau of Standards (US).Google ScholarGoogle Scholar
  28. Parker, J. 1993. All About Cotton: A Fabric Dictionary & Swatchbook. Rain City Pub.Google ScholarGoogle Scholar
  29. Pellacini, F. and Lawrence, J. 2007. AppWand: editing measured materials using appearance-driven optimization. ACM Trans. Graph. 26, 3, 54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Pont, S. C. and Koenderink, J. J. 2003. Split off-specular reflection and surface scattering from woven materials. Appl. Opt. 42, 1526--1533.Google ScholarGoogle ScholarCross RefCross Ref
  31. Sattler, M., Sarlette, R., and Klein, R. 2003. Efficient and realistic visualization of cloth. In Proceedings of the Eurographics Workshop on Rendering. 167--177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sirikasemlert, A. and Tao, X. 1999. Effects of fabric parameters on specular reflection of single-jersey knitted fabrics. Textile Res. J. 69, 9, 663--675.Google ScholarGoogle ScholarCross RefCross Ref
  33. Tao, X. and Sirikasemlert, A. 1999. A three-dimensional analysis of specular reflection from single-jersey knitted fabrics. Textile Res. J. 69, 1, 43--51.Google ScholarGoogle ScholarCross RefCross Ref
  34. Volevich, V. L., Kopylov, E. A., Khodulev, A. B., and Karpenko, O. A. 1997. An approach to cloth synthesis and visualization. In Proceedings of the GRAPHICON Conference.Google ScholarGoogle Scholar
  35. Wang, J., Zhao, S., Tong, X., Snyder, J., and Guo, B. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Trans. Graph. 27, 3, 41:1--41:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Welford, T. 1967. The Textiles Student's Manual. Pitman, London.Google ScholarGoogle Scholar
  37. Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from complex surfaces. In Proceedings of the SIGGRAPH Conference. 255--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wu, H., Dorsey, J., and Rushmeier, H. 2011. A sparse parametric mixture model for BTF compression, editing and rendering. Comput. Graph. Forum 30, 2, 465--473.Google ScholarGoogle ScholarCross RefCross Ref
  39. Xu, Y.-Q., Chen, Y., Lin, S., Zhong, H., Wu, E., Guo, B., and Shum, H.-Y. 2001. Photorealistic rendering of knitwear using the Lumislice. In Proceedings of the SIGGRAPH Conference. 391--398. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Yasuda, T., Yokoi, S., ichiro Toriwaki, J., and Inagaki, K. 1992. A shading model for cloth objects. IEEE Comput. Graph. Appl. 12, 6, 15--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Zinke, A. and Weber, A. 2007. Light scattering from filaments. IEEE Trans. Vis. Comp. Graph. 13, 2, 342--356. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Specular reflection from woven cloth

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 1
        January 2012
        149 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2077341
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 2 February 2012
        • Accepted: 1 August 2011
        • Revised: 1 June 2011
        • Received: 1 February 2011
        Published in tog Volume 31, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader