skip to main content
research-article

Animation cartography—intrinsic reconstruction of shape and motion

Authors Info & Claims
Published:30 April 2012Publication History
Skip Abstract Section

Abstract

In this article, we consider the problem of animation reconstruction, that is, the reconstruction of shape and motion of a deformable object from dynamic 3D scanner data, without using user-provided template models. Unlike previous work that addressed this problem, we do not rely on locally convergent optimization but present a system that can handle fast motion, temporally disrupted input, and can correctly match objects that disappear for extended time periods in acquisition holes due to occlusion. Our approach is motivated by cartography: We first estimate a few landmark correspondences, which are extended to a dense matching and then used to reconstruct geometry and motion. We propose a number of algorithmic building blocks: a scheme for tracking landmarks in temporally coherent and incoherent data, an algorithm for robust estimation of dense correspondences under topological noise, and the integration of local matching techniques to refine the result. We describe and evaluate the individual components and propose a complete animation reconstruction pipeline based on these ideas. We evaluate our method on a number of standard benchmark datasets and show that we can obtain correct reconstructions in situations where other techniques fail completely or require additional user guidance such as a template model.

Skip Supplemental Material Section

Supplemental Material

tp136_12.mp4

References

  1. Ahmed, N., Theobalt, C., Rossl, C., Thrun, S., and Seidel, H.-P. 2008. Dense correspondence finding for parameterization-free animation reconstruction from video. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR'08). 1--8.Google ScholarGoogle Scholar
  2. Allen, B., Curless, B., and Popović, Z. 2003. The space of human body shapes: Reconstruction and parameterization from range scans. ACM Trans. Graph. 22, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Anguelov, D., Srinivasan, P., Pang, H.-C., Koller, D., Thrun, S., and Davis, J. 2004. The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. In Proceedings of the Conference on Neural Information Processing Systems (NIPS'04).Google ScholarGoogle Scholar
  4. Anuar, N. and Guskov, I. 2004. Extracting animated meshes with adaptive motion estimation. In Proceedings of the Vision, Modeling, and Visualization Workshop (VMV'04). 63--71.Google ScholarGoogle Scholar
  5. Bickel, B., Botsch, M., Angst, R., Matusik, W., Otaduy, M., Pfister, H., and Gross, M. 2007. Multi-Scale capture of facial geometry and motion. ACM Trans. Graph. 26, 3, 33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bradley, D., Heidrich, W., Popa, T., and Sheffer, A. 2010. High resolution passive facial performance capture. ACM Trans. Graph. 29, 41:1-41:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bradley, D., Popa, T., Sheffer, A., Heidrich, W., and Boufekeur, T. 2008. Markerless garment capture. ACM Trans. Graph. 27, 3, 99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2006. Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. Proc. Nat. Acad. Sci. 103, 5, 1168--1172.Google ScholarGoogle ScholarCross RefCross Ref
  9. Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2009. Topology-Invariant similarity of nonrigid shapes. Int. J. Comput. Vis. 81, 3, 281--301. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bronstein, A. M., Bronstein, M. M., Kimmel, R., Mahmoudi, M., and Sapiro, G. 2010. A gromov-hausdorff framework with diffusion geometry for topologically-robust nonrigid shape matching. Int. J. Comput. Vis. 89, 266--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Carranza, J., Theobalt, C., Magnor, M. A., and Seidel, H.-P. 2003. Free-Viewpoint video of human actors. ACM Trans. Graph. 22, 569--577. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chang, W. and Zwicker, M. 2008. Automatic registration for articulated shapes. Comput. Graph. Forum 27, 5, 1459--1468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Chang, W. and Zwicker, M. 2009. Range scan registration using reduced deformable models. Comput. Graph. Forum 28, 2, 447--456.Google ScholarGoogle ScholarCross RefCross Ref
  14. Chum, O. and Matas, J. 2005. Matching with PROSAC—Progressive sample consensus. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR'05). Vol. 1. 220--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Davis, J., Nehab, D., Ramamoorthi, R., and Rusinkiewicz, S. 2005. Spacetime stereo: A unifying framework for depth from triangularization. IEEE Trans. Pattern Anal. Mach. Intell. 27, 2, 296--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. De Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.-P., and Thrun, S. 2008. Performance capture from sparse multi-view video. ACM Trans. Graph. 27, 3, 98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fang, Q., Gao, J., Guibas, L. J., de Silva, V., and Zhang, L. 2005. Glider: Gradient landmark-based distributed routing for sensor networks. In Proceedings of the 24th Conference of the IEEE Communications Society (InfoCom).Google ScholarGoogle Scholar
  18. Gelfand, N. and Guibas, L. J. 2004. Shape segmentation using local slippage analysis. In Proceedings of the Symposium on Geometry Processing (SGP'04). 214--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Häehnel, D., Thrun, S., and Burgard, W. 2003. An extension of the icp algorithm for modeling nonrigid objects with mobile robots. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). 915--920. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Horn, B. K. P. 1987. Closed-Form solution of absolute orientation using unit quaternions. J. Opt. Soc. Amer. A4, 4, 629--642.Google ScholarGoogle ScholarCross RefCross Ref
  21. Huang, Q.-X., Adams, B., Wicke, M., and Guibas, L. J. 2008. Nonrigid registration under isometric deformations. Comput. Graph. Forum 27, 5, 1449--1457. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Huang, Q.-X., Flöry, S., Gelfand, N., Hofer, M., and Pottmann, H. 2006. Reassembling fractured objects by geometric matching. ACM Trans. Graph. 25, 3, 569--578. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. König, S. and Gumhold, S. 2008. Image-Based motion compensation for structured light scanning of dynamic scenes. Int. J. Int. Syst. Tech. Appl. 5, 3-4, 434--441. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Leordenu, M. and Hebert, M. 2005. A spectral technique for correspondence problems using pairwise constraints. In Proceedings of the International Conference on Computer Vision (ICCV'05). Vol. 2, 1482--1489. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Li, H., Adams, B., Guibas, L. J., and Pauly, M. 2009. Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28, 5, 175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Li, H., Sumner, R. W., and Pauly, M. 2008. Global correspondence optimization for nonrigid registration of depth scans. Comput. Graph. Forum 27, 5, 1421--1430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Liao, M., Zhang, Q., Wang, H., Yang, R., and Gong, M. 2009. Modeling deformable objects from a single depth camera. In Proceedings of the International Conference on Computer Vision (ICCV'09).Google ScholarGoogle Scholar
  28. Lipman, Y. and Funkhouser, T. 2009. Möbius voting for surface correspondence. In Proceedings of the SIGGRAPH'09 Conference. ACM Press, New York, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lucas, B. D. and Kanade, T. 1981. An iterative image registration technique with an application to stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI'81). 674--679. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Mitra, N. J., Flory, S., Ovsjanikov, M., Gelfand, N., Guibas, L., and Pottsmann, H. 2007. Dynamic geometry registration. In Proceedings of the Symposium on Geometry Processing (SGP'07). 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ovsjanikov, M., Mérigot, Q., Mémoli, F., and Guibas, L. 2010. One point isometric matching with the heat kernel. In Proceedings of the Symposium on Geometry Processing (SGP'10). 1555--1564.Google ScholarGoogle Scholar
  32. Park, S. I. and Hodgins, J. K. 2006. Capturing and animating skin deformation in human motion. ACM Trans. Graph. 25, 3, 881--889. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Pekelny, Y. and Gotsman, C. 2008. Articulated object reconstruction and markerless motion capture from depth video. Comput. Graph. Forum 27, 2, 399--408.Google ScholarGoogle ScholarCross RefCross Ref
  34. Popa, T., South-Dickenson, I., Bradley, D., Sheffer, A., and Heidrich, W. 2010. Globally consistent space-time reconstruction. Comput. Graph. Forum 29, 5, 1633--1642.Google ScholarGoogle ScholarCross RefCross Ref
  35. Sand, P., McMillan, L., and Popović, J. 2003. Continuous capture of skin deformation. ACM Trans. Graph. 22, 3, 578--586. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sharf, A., Alcantara, D. A., Lewiner, T., Greif, C., Sheffer, A., Amenta, N., and Cohen-Or, D. 2008. Space-Time surface reconstruction using incompressible flow. ACM Trans. Graph. 27, 5, 110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Starck, J. and Hilton, A. 2007. Correspondence labeling for wide-timeframe free-form surface matching. In Proceedings of the International Conference on Computer Vision (ICCV'07). 1--8.Google ScholarGoogle Scholar
  38. Süssmuth, J., Winter, M., and Greiner, G. 2008. Reconstructing animated meshes from time-varying point clouds. Comput. Graph. Forum 27, 5, 1469--1476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Tevs, A., Berner, A., Wand, M., Ihrke, I., and Seidel, H.-P. 2011. Intrinsic shape matching by planned landmark sampling. Comput. Graph. Forum 30, 543--552.Google ScholarGoogle ScholarCross RefCross Ref
  40. Tevs, A., Bokeloh, M., Wand, M., Schilling, A., and Seidel, H.-P. 2009. Isometric registration of ambiguous and partial data. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR'09). 1185--1192.Google ScholarGoogle Scholar
  41. Varanasi, K., Zaharescu, A., Boyer, E., and Horaud, R. P. 2008. Temporal surface tracking using mesh evolution. In Proceedings of the European Conference on Computer Vision (ECCV'08). 30--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Vlasic, D., Peers, P., Baran, I., Debevec, P., Popović, J., Rusinkiewicz, S., and Matusik, W. 2009. Dynamic shape capture using multi-view photometric stereo. ACM Trans. Graph. 28, 5, 174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Wand, M., Adams, B., Ovsjanikov, M., Berner, A., Bokeloh, M., Jenke, P., Guibas, L., Seidel, H.-P., and Schilling, A. 2009. Efficient reconstruction of nonrigid shape and motion from real-time 3D scanner data. ACM Trans. Graph. 28, 2, 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Wand, M., Jenke, P., Huang, Q., Bokeloh, M., Guibas, L., and Schilling, A. 2007. Reconstruction of deforming geometry from time-varying point clouds. In Proceedings of the Symposium on Geometric Processing (SGP'07). 49--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Weise, T., Leife, B., and Gool, L. V. 2007. Fast 3D scanning with automatic motion compensation. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR'07). 1--8.Google ScholarGoogle Scholar
  46. Würmlin, S., Lamboray, E., Staadt, O. G., and Gross, M. H. 2002. 3D video recorder. In Proceedings of the 10th Pacific Conference on Computer Graphics and Applications (PG'02). IEEE Computer Society, Washington, DC, 325. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Zhang, L., Snavely, N., Curless, B., and Seitz, S. M. 2004. Space-Time faces: High resolution capture for modeling and animation. ACM Trans. Graph. 23, 3, 548--558. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Zheng, Q., Sharf, A., Tagliasacchi, A., Chen, B., Zhang, H., Sheffer, A., and Cohen-Or, D. 2010. Consensus skeleton for nonrigid space-time registration. Comput. Graph. Forum 29, 2, 635--644.Google ScholarGoogle ScholarCross RefCross Ref
  49. Zitnick, C. L., Kang, S. B., Uyttendaele, M., Winder, S., and Szeliski, R. 2004. High-Quality video view interpolation using a layered representation. In ACM SIGGRAPH'04 Papers. ACM, New York, 600--608. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Animation cartography—intrinsic reconstruction of shape and motion

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 31, Issue 2
            April 2012
            78 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2159516
            Issue’s Table of Contents

            Copyright © 2012 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 30 April 2012
            • Accepted: 1 October 2011
            • Revised: 1 August 2011
            • Received: 1 February 2011
            Published in tog Volume 31, Issue 2

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader