skip to main content
research-article

MultiFLIP for energetic two-phase fluid simulation

Published:30 April 2012Publication History
Skip Abstract Section

Abstract

Physically-based liquid animations often ignore the influence of air, giving up interesting behavior. We present a new method which treats both air and liquid as incompressible, more accurately reproducing the reality observed at scales relevant to computer animation. The Fluid Implicit Particle (FLIP) method, already shown to effectively simulate incompressible fluids with low numerical dissipation, is extended to two-phase flow by associating a phase bit with each particle. The liquid surface is reproduced at each time step from the particle positions, which are adjusted to prevent mixing near the surface and to allow for accurate surface tension. The liquid surface is adjusted around small-scale features so they are represented in the grid-based pressure projection, while separate, loosely coupled velocity fields reduce unwanted influence between the phases. The resulting scheme is easy to implement, requires little parameter tuning, and is shown to reproduce lively two-phase fluid phenomena.

Skip Supplemental Material Section

Supplemental Material

tp145_12.mp4

References

  1. Batty, C., Xenos, S., and Houston, B. 2010. Tetrahedral embedded boundary methods for accurate and flexible adaptive fluids. Comput. Graph. Forum. 29. Wiley Online Library, 695--704.Google ScholarGoogle Scholar
  2. Beard, K. and Chuang, C. 1987. A new model for the equilibrium shape of raindrops. J. Atmos. Sci. 44, 11, 1509--1524.Google ScholarGoogle ScholarCross RefCross Ref
  3. Blinn, J. 1982. A generalization of algebraic surface drawing. ACM Trans. Graph. 1, 3, 235--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Brackbill, J. and Ruppel, H. 1986. FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65, 2, 314--343. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bridson, R. 2008. Fluid Simulation for Computer Graphics. AK Peters Ltd. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 1, 83--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Fedkiw, R., Aslam, T., Merriman, B., and Osher, S. 1999. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 2, 457--492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Foster, N. and Fedkiw, R. 2001. Practical animation of liquids. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH). ACM, New York, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Harlow, F. 2004. Fluid dynamics in group T-3 Los Alamos national laboratory. J. Comput. Phys. 195, 2, 414--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Harlow, F., Welch, J., et al. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 12, 2182.Google ScholarGoogle ScholarCross RefCross Ref
  11. Hong, J., Lee, H., Yoon, J., and Kim, C. 2008. Bubbles alive. ACM SIGGRAPH Papers. ACM, 1--4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hong, J.-M. and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. 24, 3, 915--920. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kang, M., Fedkiw, R., and Liu, X. 2000. A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15, 3, 323--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kang, N., Park, J., Noh, J., and Shin, S. 2010. A hybrid approach to multiple fluid simulation using volume fractions. Comput. Graph. Forum. 29. Wiley Online Library, 685--694.Google ScholarGoogle Scholar
  15. Kim, B. 2010. Multi-phase fluid simulations using regional level sets. ACM Trans. Graph. 29. ACM, 175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kim, B., Liu, Y., Llamas, I., Jiao, X., and Rossignac, J. 2007. Simulation of bubbles in foam with the volume control method. ACM Trans. Graph. 26, 3, 98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kim, D., Song, O., and Ko, H. 2009. Stretching and wiggling liquids. ACM SIGGRAPH Asia Papers. ACM, 1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Liu, X., Fedkiw, R., and Kang, M. 2000. A boundary condition capturing method for Poisson's equation on irregular domains. J. Comput. Phys. 160, 1, 151--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23, 3, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. 25, 3, 812--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. 2008. Two-Way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14, 4, 797--804. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Macdonald, C. and Ruuth, S. 2008. Level set equations on surfaces via the closest point method. J. Sci. Comput. 35, 2, 219--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. McDonald, J. 1954. The shape of raindrops. Sci. Am. 190, 2, 64--68.Google ScholarGoogle Scholar
  24. Mihalef, V., Metaxas, D., and Sussman, M. 2009. Simulation of two-phase flow with sub-scale droplet and bubble effects. Comput. Graph. Forum 28. John Wiley & Sons, 229--238.Google ScholarGoogle Scholar
  25. Mihalef, V., Unlusu, B., Metaxas, D., Sussman, M., and Hussaini, M. 2006. Physics based boiling simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 317--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Moss, W., Yeh, H., Hong, J., Lin, M., and Manocha, D. 2010. Sounding liquids: Automatic sound synthesis from fluid simulation. ACM Trans. Graph. 29, 3, 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Osher, S. and Fedkiw, R. 2003. Level Set Methods and Dynamic Implicit Surfaces. Springer Verlag.Google ScholarGoogle Scholar
  28. Ralston, A. 1962. Runge-Kutta methods with minimum error bounds. Math. Comput. 16, 80, 431--437.Google ScholarGoogle ScholarCross RefCross Ref
  29. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland. 193--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Roble, D., Zafar, N., and Falt, H. 2005. Cartesian grid fluid simulation with irregular boundary voxels. ACM SIGGRAPH Sketches. ACM, 138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sethian, J. 1999. Fast marching methods. SIAM Rev. 41, 2, 199--235. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Solenthaler, B. and Pajarola, R. 2008. Density contrast SPH interfaces. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 211--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Song, O., Shin, H., and Ko, H. 2005. Stable but nondissipative water. ACM Trans. Graph. 24, 1, 81--97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sprenger, C., Trazzi, D., Hemberger, A., and Marino, S. 2010. Digital water for avatar. ACM SIGGRAPH Talks. ACM, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Stam, J. 1999. Stable fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co., 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sussman, M., Hussaini, M., Smith, K., Zhi-Wei, R., and Mihalef, V. 2006. A second-order adaptive sharp-interface method for incompressible multiphase flow. Comput. Fluid Dynam. 643--648.Google ScholarGoogle Scholar
  37. Sussman, M., Smith, K., Hussaini, M., Ohta, M., and Zhi-Wei, R. 2007. A sharp interface method for incompressible two-phase flows. J. Comput. Phys. 221, 2, 469--505. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Torres, D. and Brackbill, J. 2000. The point-set method: Front-Tracking without connectivity. J. Comput. Phys. 165, 2, 620--644. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zhao, H. 2005. A fast sweeping method for eikonal equations. Math. Comput. 74, 250, 603--628.Google ScholarGoogle Scholar
  40. Zheng, W., Yong, J., and Paul, J. 2006. Simulation of bubbles. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 325--333. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Zhu, Y. and Bridson, R. 2005. Animating sand as a fluid. ACM SIGGRAPH Papers. ACM, 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. MultiFLIP for energetic two-phase fluid simulation

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 31, Issue 2
          April 2012
          78 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2159516
          Issue’s Table of Contents

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 30 April 2012
          • Accepted: 1 November 2011
          • Revised: 1 September 2011
          • Received: 1 February 2011
          Published in tog Volume 31, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader