skip to main content
research-article

K-clustered tensor approximation: A sparse multilinear model for real-time rendering

Published:05 June 2012Publication History
Skip Abstract Section

Abstract

With the increasing demands for photo-realistic image synthesis in real time, we propose a sparse multilinear model, which is named K-Clustered Tensor Approximation (K-CTA), to efficiently analyze and approximate large-scale multidimensional visual datasets, so that both storage space and rendering time are substantially reduced. K-CTA not only extends previous work on Clustered Tensor Approximation (CTA) to exploit inter-cluster coherence, but also allows a compact and sparse representation for high-dimensional datasets with just a few low-order factors and reduced multidimensional cluster core tensors. Thus, K-CTA can be regarded as a sparse extension of CTA and a multilinear generalization of sparse representation. Experimental results demonstrate that K-CTA can accurately approximate spatially varying visual datasets, such as bidirectional texture functions, view-dependent occlusion texture functions, and biscale radiance transfer functions for efficient rendering in real-time applications.

Skip Supplemental Material Section

Supplemental Material

tp203_12.mp4

References

  1. Aharon, M., Elad, M., and Bruckstein, A. M. 2006. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54, 11, 4311--4322. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Chen, S. S., Donoho, D. L., and Saunders, M. A. 2001. Atomic decomposition by basis pursuit. SIAM Rev. 43, 1, 129--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chen, Y., Tong, X., Wang, J., Lin, S., Guo, B., and Shum, H.-Y. 2004. Shell texture functions. ACM Trans. Graph. 23, 3, 343--353. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2004. Variational shape approximation. ACM Trans. Graph. 23, 3, 905--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dana, K. J., Van Ginneken, B., Nayar, S. K., and Koenderink, J. J. 1999. Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18, 1, 1--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Danielsson, P.-E. 1980. Euclidean distance mapping. Comput. Graph. Image Process. 14, 227--248.Google ScholarGoogle ScholarCross RefCross Ref
  7. Davis, G. M., Mallat, S. G., and Avellaneda, M. 1997. Adaptive greedy approximations. Constr. Approx. 13, 1, 57--98.Google ScholarGoogle ScholarCross RefCross Ref
  8. De Lathauwer, L., De Moor, B., and Vandewalle, J. 2000. On the best rank-1 and rank-(R1,R2,…,Rn) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 4, 1324--1342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Elad, M., Figueiredo, M. A. T., and Ma, Y. 2010. On the role of sparse and redundant representations in image processing. Proc. IEEE 98, 6, 972--982.Google ScholarGoogle ScholarCross RefCross Ref
  10. Filip, J. and Haindl, M. 2009. Bidirectional texture function modeling: A state of the art survey. IEEE Trans. Pattern Anal. Mach. Intell. 31, 11, 1921--1940. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Heidrich, W., Daubert, K., Kautz, J., and Seidel, H.-P. 2000. Illuminating micro geometry based on precomputed visibility. In Proceedings of SIGGRAPH'00 Conference. 455--464. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Heidrich, W. and Seidel, H.-P. 1999. Realistic, Hardware-Accelerated Shading and Lighting. In Proceedings of SIGGRAPH '99 Conference. 171--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jolliffe, I. T. 2002. Principal Component Analysis 2nd Ed. Springer.Google ScholarGoogle Scholar
  14. Kambhatla, N. and Leen, T. K. 1997. Dimension reduction by local principal component analysis. Neural Comput. 9, 7, 1493--1516. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kolda, T. G. and Bader, B. W. 2009. Tensor decompositions and applications. SIAM Rev. 51, 3, 455--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Koudelka, M. L., Magda, S., Belhumeur, P. N., and Kriegman, D. J. 2003. Acquisition, compression, and synthesis of bidirectional texture functions. In Proceedings of the Texture '03 Conference. 59--64.Google ScholarGoogle Scholar
  17. Kreutz-Delgado, K., Murray, J. F., Rao, B. D., Engan, K., Lee, T.-W., and Sejnowski, T. J. 2003. Dictionary learning algorithms for sparse representation. Neural Comput. 15, 2, 349--396. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Trans. Graph. 25, 3, 735--745. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lefebvre, S. and Hoppe, H. 2006. Appearance-Space texture synthesis. ACM Trans. Graph. 25, 3, 541--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mallat, S. G. and Zhang, Z. 1993. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41, 12, 3397--3415. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Trans. Graph. 22, 3, 759--769. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. McAllister, D. K., Lastra, A., and Heidrich, W. 2002. Efficient rendering of spatial bi-directional reflectance distribution functions. In Proceedings of Graphics Hardware '02 Conference. 79--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Müller, G., Meseth, J., and Klein, R. 2003. Compression and real-time rendering of measured BTFs using local PCA. In Proceedings of the VMV '03 Conference. 271--279.Google ScholarGoogle Scholar
  24. Müller, G., Meseth, J., and Klein, R. 2004. Fast environmental lighting for local-PCA encoded BTFs. In Proceedings of the CGI '04 Conference. 198--205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Nayar, S. K., Belhumeur, P. N., and Boult, T. E. 2004. Lighting sensitive display. ACM Trans. Graph. 23, 4, 963--979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Patanè, G. and Russo, M. F. 2001. The enhanced LBG algorithm. Neural Netw. 14, 9, 1219--1237. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Policarpo, F., Oliveira, M. M., and Comba, J. L. D. 2005. Real-Time relief mapping on arbitrary polygonal surfaces. In Proceedings of the I3D'05 Conference. 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Qin, Z., McCool, M. D., and Kaplan, C. S. 2006. Real-Time texture-mapped vector glyphs. In Proceedings of the I3D'06 Conference. 125--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Rebollo-Neira, L. and Lowe, D. 2002. Optimized orthogonal matching pursuit approach. IEEE Signal Process. Lett. 9, 4, 137--140.Google ScholarGoogle Scholar
  30. Roweis, S. T. and Saul, L. K. 2000. Nonlinear dimensionality reduction by locally linear embedding. Sci. 290, 5500, 2323--2326.Google ScholarGoogle Scholar
  31. Ruiters, R. and Klein, R. 2009. BTF compression via sparse tensor decomposition. Comput. Graph. Forum 28, 4, 1181--1188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sattler, M., Sarlette, R., and Klein, R. 2003. Efficient and realistic visualization of cloth. In Proceedings of the EGSR'03 Conference. 167--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Schölkopf, B., Smola, A. J., and Müller, K.-R. 1998. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 5, 1299--1319. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sloan, P.-P. J., Hall, J., Hart, J. C., and Snyder, J. 2003a. Clustered principal components for precomputed radiance transfer. ACM Trans. Graph. 22, 3, 382--391. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sloan, P.-P. J., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph. 21, 3, 527--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sloan, P.-P. J., Liu, X., Shum, H.-Y., and Snyder, J. 2003b. Bi-Scale radiance transfer. ACM Trans. Graph. 22, 3, 370--375. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Smilde, A., Bro, R., and Geladi, P. 2004. Multi-Way Analysis: Applications in the Chemical Sciences. Wiley Press.Google ScholarGoogle Scholar
  38. Stanford Computer Graphics Laboratory. 2011. The Stanford 3D scanning repository. http://graphics.stanford.edu/data/3Dscanrep/.Google ScholarGoogle Scholar
  39. Sun, X., Hou, Q., Ren, Z., Zhou, K., and Guo, B. 2011. Radiance transfer biclustering for real-time all-frequency biscale rendering. IEEE Trans. Vis. Comput. Graph. 17, 1, 64--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Sun, X., Zhou, K., Chen, Y., Lin, S., Shi, J., and Guo, B. 2007. Interactive relighting with dynamic BRDFs. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Suykens, F., vom Berge, K., Lagae, A., and Dutré, P. 2003. Interactive rendering with bidirectional texture functions. Comput. Graph. Forum 22, 3, 463--472.Google ScholarGoogle ScholarCross RefCross Ref
  42. Tenenbaum, J. B., De Silva, V., and Langford, J. C. 2000. A global geometric framework for nonlinear dimensionality reduction. Sci. 290, 5500, 2319--2323.Google ScholarGoogle Scholar
  43. Tsai, Y.-T. 2009. Parametric representations and tensor approximation algorithms for real-time data-driven rendering. Ph.D. thesis, National Chiao Tung University.Google ScholarGoogle Scholar
  44. Tsai, Y.-T., Fang, K.-L., Lin, W.-C., and Shih, Z.-C. 2011. Modeling bidirectional texture functions with multivariate spherical radial basis functions. IEEE Trans. Pattern Anal. Mach. Intell. 33, 7, 1356--1369. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Tsai, Y.-T. and Shih, Z.-C. 2006. All-Frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. ACM Trans. Graph. 25, 3, 967--976. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Vasilescu, M. A. O. and Terzopoulos, D. 2003. Multilinear subspace analysis of image ensembles. In Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'03). 93--99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Vasilescu, M. A. O. and Terzopoulos, D. 2004. TensorTextures: Multilinear image-based rendering. ACM Trans. Graph. 23, 3, 336--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Vlasic, D., Brand, M., Pfister, H., and Popović, J. 2005. Face transfer with multilinear models. ACM Trans. Graph. 24, 3, 426--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Wang, H., Wu, Q., Shi, L., Yu, Y., and Ahuja, N. 2005. Out-of-Core tensor approximation of multi-dimensional matrices of visual data. ACM Trans. Graph. 24, 3, 527--535. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Wang, L., Wang, X., Tong, X., Lin, S., Hu, S.-M., Guo, B., and Shum, H.-Y. 2003. View-Dependent displacement mapping. ACM Trans. Graph. 22, 3, 334--339. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Wright, J., Ma, Y., Mairal, J., Spairo, G. R., Huang, T. S., and Yan, S. 2010. Sparse representation for computer vision and pattern recognition. Proc. IEEE 98, 6, 1031--1044.Google ScholarGoogle ScholarCross RefCross Ref
  52. Wu, Q., Xia, T., Chen, C., Lin, H.-Y. S., Wang, H., and Yu, Y. 2008. Hierarchical tensor approximation of multi-dimensional visual data. IEEE Trans. Vis. Comput. Graph. 14, 1, 186--199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Xu, K., Jia, Y.-T., Fu, H., Hu, S.-M., and Tai, C.-L. 2008. Spherical piecewise constant basis functions for all-frequency precomputed radiance transfer. IEEE Trans. Vis. Comput. Graph. 14, 2, 454--467. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. K-clustered tensor approximation: A sparse multilinear model for real-time rendering

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 3
        May 2012
        92 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2167076
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 5 June 2012
        • Accepted: 1 December 2011
        • Revised: 1 October 2011
        • Received: 1 April 2011
        Published in tog Volume 31, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader