Abstract
With the increasing demands for photo-realistic image synthesis in real time, we propose a sparse multilinear model, which is named K-Clustered Tensor Approximation (K-CTA), to efficiently analyze and approximate large-scale multidimensional visual datasets, so that both storage space and rendering time are substantially reduced. K-CTA not only extends previous work on Clustered Tensor Approximation (CTA) to exploit inter-cluster coherence, but also allows a compact and sparse representation for high-dimensional datasets with just a few low-order factors and reduced multidimensional cluster core tensors. Thus, K-CTA can be regarded as a sparse extension of CTA and a multilinear generalization of sparse representation. Experimental results demonstrate that K-CTA can accurately approximate spatially varying visual datasets, such as bidirectional texture functions, view-dependent occlusion texture functions, and biscale radiance transfer functions for efficient rendering in real-time applications.
Supplemental Material
Available for Download
Supplemental movie and image files for, K-clustered tensor approximation: A sparse multilinear model for real-time rendering
- Aharon, M., Elad, M., and Bruckstein, A. M. 2006. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54, 11, 4311--4322. Google Scholar
Digital Library
- Chen, S. S., Donoho, D. L., and Saunders, M. A. 2001. Atomic decomposition by basis pursuit. SIAM Rev. 43, 1, 129--159. Google Scholar
Digital Library
- Chen, Y., Tong, X., Wang, J., Lin, S., Guo, B., and Shum, H.-Y. 2004. Shell texture functions. ACM Trans. Graph. 23, 3, 343--353. Google Scholar
Digital Library
- Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2004. Variational shape approximation. ACM Trans. Graph. 23, 3, 905--914. Google Scholar
Digital Library
- Dana, K. J., Van Ginneken, B., Nayar, S. K., and Koenderink, J. J. 1999. Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18, 1, 1--34. Google Scholar
Digital Library
- Danielsson, P.-E. 1980. Euclidean distance mapping. Comput. Graph. Image Process. 14, 227--248.Google Scholar
Cross Ref
- Davis, G. M., Mallat, S. G., and Avellaneda, M. 1997. Adaptive greedy approximations. Constr. Approx. 13, 1, 57--98.Google Scholar
Cross Ref
- De Lathauwer, L., De Moor, B., and Vandewalle, J. 2000. On the best rank-1 and rank-(R1,R2,…,Rn) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 4, 1324--1342. Google Scholar
Digital Library
- Elad, M., Figueiredo, M. A. T., and Ma, Y. 2010. On the role of sparse and redundant representations in image processing. Proc. IEEE 98, 6, 972--982.Google Scholar
Cross Ref
- Filip, J. and Haindl, M. 2009. Bidirectional texture function modeling: A state of the art survey. IEEE Trans. Pattern Anal. Mach. Intell. 31, 11, 1921--1940. Google Scholar
Digital Library
- Heidrich, W., Daubert, K., Kautz, J., and Seidel, H.-P. 2000. Illuminating micro geometry based on precomputed visibility. In Proceedings of SIGGRAPH'00 Conference. 455--464. Google Scholar
Digital Library
- Heidrich, W. and Seidel, H.-P. 1999. Realistic, Hardware-Accelerated Shading and Lighting. In Proceedings of SIGGRAPH '99 Conference. 171--178. Google Scholar
Digital Library
- Jolliffe, I. T. 2002. Principal Component Analysis 2nd Ed. Springer.Google Scholar
- Kambhatla, N. and Leen, T. K. 1997. Dimension reduction by local principal component analysis. Neural Comput. 9, 7, 1493--1516. Google Scholar
Digital Library
- Kolda, T. G. and Bader, B. W. 2009. Tensor decompositions and applications. SIAM Rev. 51, 3, 455--500. Google Scholar
Digital Library
- Koudelka, M. L., Magda, S., Belhumeur, P. N., and Kriegman, D. J. 2003. Acquisition, compression, and synthesis of bidirectional texture functions. In Proceedings of the Texture '03 Conference. 59--64.Google Scholar
- Kreutz-Delgado, K., Murray, J. F., Rao, B. D., Engan, K., Lee, T.-W., and Sejnowski, T. J. 2003. Dictionary learning algorithms for sparse representation. Neural Comput. 15, 2, 349--396. Google Scholar
Digital Library
- Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Trans. Graph. 25, 3, 735--745. Google Scholar
Digital Library
- Lefebvre, S. and Hoppe, H. 2006. Appearance-Space texture synthesis. ACM Trans. Graph. 25, 3, 541--548. Google Scholar
Digital Library
- Mallat, S. G. and Zhang, Z. 1993. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41, 12, 3397--3415. Google Scholar
Digital Library
- Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Trans. Graph. 22, 3, 759--769. Google Scholar
Digital Library
- McAllister, D. K., Lastra, A., and Heidrich, W. 2002. Efficient rendering of spatial bi-directional reflectance distribution functions. In Proceedings of Graphics Hardware '02 Conference. 79--88. Google Scholar
Digital Library
- Müller, G., Meseth, J., and Klein, R. 2003. Compression and real-time rendering of measured BTFs using local PCA. In Proceedings of the VMV '03 Conference. 271--279.Google Scholar
- Müller, G., Meseth, J., and Klein, R. 2004. Fast environmental lighting for local-PCA encoded BTFs. In Proceedings of the CGI '04 Conference. 198--205. Google Scholar
Digital Library
- Nayar, S. K., Belhumeur, P. N., and Boult, T. E. 2004. Lighting sensitive display. ACM Trans. Graph. 23, 4, 963--979. Google Scholar
Digital Library
- Patanè, G. and Russo, M. F. 2001. The enhanced LBG algorithm. Neural Netw. 14, 9, 1219--1237. Google Scholar
Digital Library
- Policarpo, F., Oliveira, M. M., and Comba, J. L. D. 2005. Real-Time relief mapping on arbitrary polygonal surfaces. In Proceedings of the I3D'05 Conference. 155--162. Google Scholar
Digital Library
- Qin, Z., McCool, M. D., and Kaplan, C. S. 2006. Real-Time texture-mapped vector glyphs. In Proceedings of the I3D'06 Conference. 125--132. Google Scholar
Digital Library
- Rebollo-Neira, L. and Lowe, D. 2002. Optimized orthogonal matching pursuit approach. IEEE Signal Process. Lett. 9, 4, 137--140.Google Scholar
- Roweis, S. T. and Saul, L. K. 2000. Nonlinear dimensionality reduction by locally linear embedding. Sci. 290, 5500, 2323--2326.Google Scholar
- Ruiters, R. and Klein, R. 2009. BTF compression via sparse tensor decomposition. Comput. Graph. Forum 28, 4, 1181--1188. Google Scholar
Digital Library
- Sattler, M., Sarlette, R., and Klein, R. 2003. Efficient and realistic visualization of cloth. In Proceedings of the EGSR'03 Conference. 167--178. Google Scholar
Digital Library
- Schölkopf, B., Smola, A. J., and Müller, K.-R. 1998. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 5, 1299--1319. Google Scholar
Digital Library
- Sloan, P.-P. J., Hall, J., Hart, J. C., and Snyder, J. 2003a. Clustered principal components for precomputed radiance transfer. ACM Trans. Graph. 22, 3, 382--391. Google Scholar
Digital Library
- Sloan, P.-P. J., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph. 21, 3, 527--536. Google Scholar
Digital Library
- Sloan, P.-P. J., Liu, X., Shum, H.-Y., and Snyder, J. 2003b. Bi-Scale radiance transfer. ACM Trans. Graph. 22, 3, 370--375. Google Scholar
Digital Library
- Smilde, A., Bro, R., and Geladi, P. 2004. Multi-Way Analysis: Applications in the Chemical Sciences. Wiley Press.Google Scholar
- Stanford Computer Graphics Laboratory. 2011. The Stanford 3D scanning repository. http://graphics.stanford.edu/data/3Dscanrep/.Google Scholar
- Sun, X., Hou, Q., Ren, Z., Zhou, K., and Guo, B. 2011. Radiance transfer biclustering for real-time all-frequency biscale rendering. IEEE Trans. Vis. Comput. Graph. 17, 1, 64--73. Google Scholar
Digital Library
- Sun, X., Zhou, K., Chen, Y., Lin, S., Shi, J., and Guo, B. 2007. Interactive relighting with dynamic BRDFs. ACM Trans. Graph. 26, 3. Google Scholar
Digital Library
- Suykens, F., vom Berge, K., Lagae, A., and Dutré, P. 2003. Interactive rendering with bidirectional texture functions. Comput. Graph. Forum 22, 3, 463--472.Google Scholar
Cross Ref
- Tenenbaum, J. B., De Silva, V., and Langford, J. C. 2000. A global geometric framework for nonlinear dimensionality reduction. Sci. 290, 5500, 2319--2323.Google Scholar
- Tsai, Y.-T. 2009. Parametric representations and tensor approximation algorithms for real-time data-driven rendering. Ph.D. thesis, National Chiao Tung University.Google Scholar
- Tsai, Y.-T., Fang, K.-L., Lin, W.-C., and Shih, Z.-C. 2011. Modeling bidirectional texture functions with multivariate spherical radial basis functions. IEEE Trans. Pattern Anal. Mach. Intell. 33, 7, 1356--1369. Google Scholar
Digital Library
- Tsai, Y.-T. and Shih, Z.-C. 2006. All-Frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. ACM Trans. Graph. 25, 3, 967--976. Google Scholar
Digital Library
- Vasilescu, M. A. O. and Terzopoulos, D. 2003. Multilinear subspace analysis of image ensembles. In Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'03). 93--99. Google Scholar
Digital Library
- Vasilescu, M. A. O. and Terzopoulos, D. 2004. TensorTextures: Multilinear image-based rendering. ACM Trans. Graph. 23, 3, 336--342. Google Scholar
Digital Library
- Vlasic, D., Brand, M., Pfister, H., and Popović, J. 2005. Face transfer with multilinear models. ACM Trans. Graph. 24, 3, 426--433. Google Scholar
Digital Library
- Wang, H., Wu, Q., Shi, L., Yu, Y., and Ahuja, N. 2005. Out-of-Core tensor approximation of multi-dimensional matrices of visual data. ACM Trans. Graph. 24, 3, 527--535. Google Scholar
Digital Library
- Wang, L., Wang, X., Tong, X., Lin, S., Hu, S.-M., Guo, B., and Shum, H.-Y. 2003. View-Dependent displacement mapping. ACM Trans. Graph. 22, 3, 334--339. Google Scholar
Digital Library
- Wright, J., Ma, Y., Mairal, J., Spairo, G. R., Huang, T. S., and Yan, S. 2010. Sparse representation for computer vision and pattern recognition. Proc. IEEE 98, 6, 1031--1044.Google Scholar
Cross Ref
- Wu, Q., Xia, T., Chen, C., Lin, H.-Y. S., Wang, H., and Yu, Y. 2008. Hierarchical tensor approximation of multi-dimensional visual data. IEEE Trans. Vis. Comput. Graph. 14, 1, 186--199. Google Scholar
Digital Library
- Xu, K., Jia, Y.-T., Fu, H., Hu, S.-M., and Tai, C.-L. 2008. Spherical piecewise constant basis functions for all-frequency precomputed radiance transfer. IEEE Trans. Vis. Comput. Graph. 14, 2, 454--467. Google Scholar
Digital Library
Index Terms
K-clustered tensor approximation: A sparse multilinear model for real-time rendering
Recommendations
Multiway K-Clustered Tensor Approximation: Toward High-Performance Photorealistic Data-Driven Rendering
This article presents a generalized sparse multilinear model, namely multiway K-clustered tensor approximation (MK-CTA), for synthesizing photorealistic 3D images from large-scale multidimensional visual datasets. MK-CTA extends previous tensor ...
All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation
SIGGRAPH '06: ACM SIGGRAPH 2006 PapersThis paper introduces a new data representation and compression technique for precomputed radiance transfer (PRT). The light transfer functions and light sources are modeled with spherical radial basis functions (SRBFs). A SRBF is a rotation-invariant ...
All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation
This paper introduces a new data representation and compression technique for precomputed radiance transfer (PRT). The light transfer functions and light sources are modeled with spherical radial basis functions (SRBFs). A SRBF is a rotation-invariant ...





Comments