skip to main content
research-article

Variational mesh decomposition

Published:05 June 2012Publication History
Skip Abstract Section

Abstract

The problem of decomposing a 3D mesh into meaningful segments (or parts) is of great practical importance in computer graphics. This article presents a variational mesh decomposition algorithm that can efficiently partition a mesh into a prescribed number of segments. The algorithm extends the Mumford-Shah model to 3D meshes that contains a data term measuring the variation within a segment using eigenvectors of a dual Laplacian matrix whose weights are related to the dihedral angle between adjacent triangles and a regularization term measuring the length of the boundary between segments. Such a formulation simultaneously handles segmentation and boundary smoothing, which are usually two separate processes in most previous work. The efficiency is achieved by solving the Mumford-Shah model through a saddle-point problem that is solved by a fast primal-dual method. A preprocess step is also proposed to determine the number of segments that the mesh should be decomposed into. By incorporating this preprocessing step, the proposed algorithm can automatically segment a mesh into meaningful parts. Furthermore, user interaction is allowed by incorporating the user's inputs into the variational model to reflect the user's special intention. Experimental results show that the proposed algorithm outperforms competitive segmentation methods when evaluated on the Princeton Segmentation Benchmark.

Skip Supplemental Material Section

Supplemental Material

tp102_12.mp4

References

  1. Attene, M., Katz, S., Mortara, M., Patanè, G., Spagnuolo, M., and Tal, A. 2006. Mesh segmentation - A comparative study. In Proceedings of the International Conference on Shape Modeling and Applications, 14--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bardsley, J. M. and Luttman, A. 2009. A fixed point formulation of the k-means algorithm and a connection to Mumford-Shah. Appl. Math. E-Notes 9, 274--276.Google ScholarGoogle Scholar
  3. Chen, X., Golovinskiy, A., and Funkhouser, T. 2009. A benchmark for 3D mesh segmentation. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2004. Variational shape approximation. ACM Trans. Graph. 23, 3, 905--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Delaunoy, A., Fundana, K., Prados, E., and Heyden, A. 2009. Convex multi-region segmentation on manifolds. In Proceedings of the International Conference on Computer Vision (ICCV).Google ScholarGoogle Scholar
  6. Dey, T. K., Giesen, J., and Goswami, S. 2003. Shape segmentation and matching with flow discretization. In Proceedings of 8th International Workshop on Algorithms and Data Structures (WADS). 25--36.Google ScholarGoogle Scholar
  7. Dey, T. K., Ranjan, P., and Wang, Y. 2010. Convergence, stability, and discrete approximation of Laplace spectra. In Proceedings of ACM/SIAM Symposium on Discreate Algorithms (SODA). 650--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., and Dobkin, D. 2004. Modeling by example. ACM Trans. Graph. 652--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Golovinskiy, A. and Funkhouser, T. A. 2008. Randomized cuts for 3D mesh analysis. ACM Trans. Graph. 27, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Grady, L. 2006. Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28, 11, 1768--1783. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gregory, A., State, A., Lin, M. C., Manocha, D., and Livingston, M. A. 1999. Interactive surface decomposition for polyhedral morphing. Vis. Comput. 9, 453--470.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hagen, L. W. and Kahng, A. B. 1992. New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput. Aid. Des. Integr. Circ. Syst. 11, 9, 1074--1085. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hoffman, D. and Singh, M. 1997. Salience of visual parts. Cognition, 29--78.Google ScholarGoogle Scholar
  14. Hoffman, D. D. and Richards, W. 1984. Parts of recognition. Cognition, 65--96.Google ScholarGoogle Scholar
  15. Kalogerakis, E., Hertzmann, A., and Singh, K. 2010. Learning 3D mesh segmentation and labeling. ACM Trans. Graph. 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Katz, S., Leifman, G., and Tal, A. 2005. Mesh segmentation using feature point and core extraction. Vis. Comput. 21, 8-10, 649--658.Google ScholarGoogle ScholarCross RefCross Ref
  17. Katz, S. and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22, 3, 954--961. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lai, Y.-K., Hu, S.-M., Martin, R. R., and Rosin, P. L. 2008. Fast mesh segmentation using random walks. In Proceedings of the ACM Symposium on Solid and Physical Modeling. 183--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., and Seidel, H.-P. 2005. Mesh scissoring with minima rule and part salience. Comput. Aid. Geom. Des. 22, 5, 444--465. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lellmann, J. and Schnörr, C. 2011. Continuous multiclass labeling approaches and algorithms. CoRR abs/1102.5448.Google ScholarGoogle Scholar
  21. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 362--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lévy, B. and Zhang, R. H. 2010. Spectral geometry processing. In ACM SIGGRAPH Course Notes.Google ScholarGoogle Scholar
  23. Liu, R. and Zhang, H. 2004. Segmentation of 3D meshes through spectral clustering. In Proceedings of the Pacific Conference on Computer Graphics and Applications. 298--305. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Liu, R. and Zhang, H. 2007. Mesh segmentation via spectral embedding and contour analysis. Comput. Graph. Forum 26, 3, 385--394.Google ScholarGoogle ScholarCross RefCross Ref
  25. Mumford, D. and Shah, J. 1989. Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 5, 577--685.Google ScholarGoogle Scholar
  26. Ng, A. Y., Jordan, M. I., and Weiss, Y. 2001. On spectral clustering: Analysis and an algorithm. In Proceedings of the Conference on Neural Information Processing Systems (NIPS). 849--856.Google ScholarGoogle Scholar
  27. Nikolova, M., Esedoglu, S., and Chan, T. F. 2006. Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66, 5, 1632--1648.Google ScholarGoogle ScholarCross RefCross Ref
  28. Pock, T., Chambolle, A., Cremers, D., and Bischof, H. 2009a. A convex relaxation approach for computing minimal partitions. In Computer Vision and Pattern Recognition, 810--817.Google ScholarGoogle Scholar
  29. Pock, T., Cremers, D., Bischof, H., and Chambolle, A. 2009b. An algorithm for minimizing the piecewise smooth Mumford-Shah functional. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).Google ScholarGoogle Scholar
  30. Polito, M. and Perona, P. 2001. Grouping and dimensionality reduction by locally linear embedding. In Proceedings of the Conference on Neural Information Processing Systems (NIPS). 1255--1262.Google ScholarGoogle Scholar
  31. Popov, L. D. 1980. A modification of the Arrow-Hurwicz method for search of saddle points. Math. Notes 28, 5, 845--848.Google ScholarGoogle ScholarCross RefCross Ref
  32. Rockafellar, R. T. 1970. Convex Analysis. Princeton University Press.Google ScholarGoogle Scholar
  33. Shamir, A. 2008. A survey on mesh segmentation techniques. Comput. Graph. Forum 27, 6, 1539--1556.Google ScholarGoogle ScholarCross RefCross Ref
  34. Shamir, A., Shapira, L., and Cohen-Or, D. 2006. Mesh analysis using geodesic mean-shift. Vis. Comput. 22, 99--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Shapira, L., Shamir, A., and Cohen-Or, D. 2008. Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24, 4, 249--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Shlafman, S., Tal, A., and Katz, S. 2002. Metamorphosis of polyhedral surfaces using decomposition. Comput. Graph. Forum 21, 219--228.Google ScholarGoogle ScholarCross RefCross Ref
  37. Vese, L. A. and Chan, T. F. 2002. A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. Comput. Vis. 50, 3, 271--293. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. von Luxburg, U. 2007. A tutorial on spectral clustering. Statist. Comput. 17, 4, 395--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wu, C., Deng, J., Chen, F., and Tai, X. 2009. Scale-Space analysis of discrete filtering over arbitrary triangulated surfaces. SIAM J. Imaging Sci. 2, 2, 670--709. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Yamauchi, H., Lee, S., Lee, Y., Ohtake, Y., Belyaev, A., and Seidel, H.-P. 2005. Feature sensitive mesh segmentation with mean shift. In Proceedings of the International Conference on Shape Modeling and Applications. 238--245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Zelnik-Manor, L. and Perona, P. 2004. Self-Tuning Spectral Clustering. In Proceedings of the Conference on Neural Information Processing Systems (NIPS).Google ScholarGoogle Scholar
  42. Zhang, J., Wu, C., Cai, J., Zheng, J., and Tai, X.-C. 2010. Mesh snapping: Robust interactive mesh cutting using fast geodesic curvature flow. Comput. Graph. Forum 29, 2, 517--526.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Variational mesh decomposition

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 3
        May 2012
        92 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2167076
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 5 June 2012
        • Accepted: 1 December 2011
        • Received: 1 September 2011
        Published in tog Volume 31, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader