skip to main content
research-article

Topology-adaptive interface tracking using the deformable simplicial complex

Published:05 June 2012Publication History
Skip Abstract Section

Abstract

We present a novel, topology-adaptive method for deformable interface tracking, called the Deformable Simplicial Complex (DSC). In the DSC method, the interface is represented explicitly as a piecewise linear curve (in 2D) or surface (in 3D) which is a part of a discretization (triangulation/tetrahedralization) of the space, such that the interface can be retrieved as a set of faces separating triangles/tetrahedra marked as inside from the ones marked as outside (so it is also given implicitly). This representation allows robust topological adaptivity and, thanks to the explicit representation of the interface, it suffers only slightly from numerical diffusion. Furthermore, the use of an unstructured grid yields robust adaptive resolution. Also, topology control is simple in this setting. We present the strengths of the method in several examples: simple geometric flows, fluid simulation, point cloud reconstruction, and cut locus construction.

Skip Supplemental Material Section

Supplemental Material

tp227_12.mp4

References

  1. Bærentzen, J. A. 2010. Introduction to GEL. http://www2.imm.dku.dk/projects/GEL/intro.pdf.Google ScholarGoogle Scholar
  2. Bargteil, A. W., Goktekin, T. G., O'Brien, J. F., and Strain, J. A. 2006. A semi-lagrangian contouring method for fluid simulation. ACM Trans. Graph. 25, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bridson, R. 2008. Fluid Simulation. A. K. Peters, Ltd., Natick, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Brochu, T. and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4, 2472--2493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chew, L. 1997. Guaranteed-Quality delaunay meshing in 3d (short version). In Proceedings of the 13th Annual Symposium on Computational Geometry. ACM, New York. 391--393. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 1, 83--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Erleben, K., Misztal, M. K., and Bærentzen, J. A. 2011. Mathematical foundation of the optimization-based fluid animation method. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA). 101--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Floriani, L. D., Hui, A., Panozzo, D., and Canino, D. 2010. A dimension-independent data structure for simplicial complexes. In Proceedings of the 19th International Meshing Roundtable.Google ScholarGoogle Scholar
  9. Freitag, L. A., Jones, M., and Plassmann, P. 1995. An efficient parallel algorithm for mesh smoothing. In Proceedings of the 4th International Meshing Roundtable. 103--112.Google ScholarGoogle Scholar
  10. Freitag, L. A. and Ollivier-Gooch, C. 1997. Tetrahedral mesh improvement using swapping and smoothing. Int. J. Numer. Methods Engin. 40, 3979--4002.Google ScholarGoogle ScholarCross RefCross Ref
  11. Glimm, J., Grove, J. W., Li, X. L., Shyue, K.-M., Zeng, Y., and Zhang, Q. 1995. Three dimensional front tracking. SIAM J. Sci. Comput. 19, 703--727. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hansen, M. F., Bærentzen, J. A., and Larsen, R. 2009. Generating quality tetrahedral meshes from binary volumes. In Proceedings of the VISAPP Conference.Google ScholarGoogle Scholar
  13. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. 1993. Mesh optimization. In Proceedings of the ACM SIGGRAPH Conference. 19--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jiao, X. 2007. Face offsetting: A unified approach for explicit moving interfaces. J. Comput. Phys. 220, 2, 612--625. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kazhdan, M., Bolitho, M., and Hoppe, H. 2006. Poisson surface reconstruction. In Proceedings of the 4th Eurographics Symposium on Geometry Processing (SGP '06). Eurographics Association, 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Klingner, B. M. and Shewchuk, J. R. 2007. Agressive tetrahedral mesh improvement. In Proceedings of the 16th International Meshing Roundtable. 3--23.Google ScholarGoogle Scholar
  17. Lachaud, J. and Montanvert, A. 1999. Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction. Med. Image Anal. 3, 2, 187--207.Google ScholarGoogle ScholarCross RefCross Ref
  18. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Mäntylä, M. 1988. An Introduction to Solid Modeling. Computer Science Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. McInerney, T. and Terzopoulos, D. 2000. T-snakes: Topology adaptive snakes. Med. Image Anal. 4, 2, 73--91.Google ScholarGoogle ScholarCross RefCross Ref
  21. Misztal, M. K., Bærentzen, J. A., Anton, F., and Erleben, K. 2009. Tetrahedral mesh improvement using multi-face retriangulation. In Proceedings of the 18th International Meshing Roundtable. 539--556.Google ScholarGoogle Scholar
  22. Misztal, M. K., Bærentzen, J. A., Anton, F., and Markvorsen, S. 2011. Cut locus construction using deformable simplicial complexes. In Proceedings of the 8th International Symposium on Voronoi Diagrams in Science and Engineering. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Misztal, M. K., Bridson, R., Erleben, K., Bærentzen, J. A., and Anton, F. 2010. Optimization-Based fluid simulation on unstructured meshes. In Proceedings of the 7th Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS10).Google ScholarGoogle Scholar
  24. Osher, S. J. and Fedkiw, R. P. 2002. Level Set Methods and Dynamic Implicit Surfaces 1st Ed. Springer.Google ScholarGoogle Scholar
  25. Parthasarathy, V. N., Graichen, C. M., and Hathaway, A. F. 1994. A comparison of tetrahedron quality measures. Finite Elements Anal. Des. 15, 3, 255--261. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Pinkall, U. and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Exper. Math. 2, 1, 15--36.Google ScholarGoogle ScholarCross RefCross Ref
  27. Pons, J.-P. and Boissonnat, J.-D. 2007a. Delaunay deformable models: Topology-adaptive meshes based on the restricted delaunay triangulation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1--8.Google ScholarGoogle Scholar
  28. Pons, J.-P. and Boissonnat, J.-D. 2007b. A lagrangian approach to dynamic interfaces through kinetic triangulation of the ambient space. Comput. Graph. Forum 26, 2, 227--239.Google ScholarGoogle ScholarCross RefCross Ref
  29. Sakai, T. 1996. Riemannian Geometry. Translations of Mathematical Monographs, vol. 149, American Mathematical Society.Google ScholarGoogle Scholar
  30. Shen, C., O'Brien, J. F., and Shewchuk, J. R. 2004. Interpolating and approximating implicit surfaces from polygon soup. In Proceedings of ACM SIGGRAPH Conference. ACM Press, 896--904. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Shewchuk, J. R. 1998. Tetrahedral mesh generation by Delaunay refinement. In Proceedings of the 14th Annual Symposium on Computational Geometry. ACM, New York. 86--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Shewchuk, J. R. 2002. What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality measures. http://www.cs.berkeley.edu/jrs/papers/elemj/pdf.Google ScholarGoogle Scholar
  33. Si, H. 2004. Tetgen, a quality tetrahedral mesh generator and three-dimensional delaunay triangulator, v1.3 user's manual. Tech. rep., WIAS.Google ScholarGoogle Scholar
  34. Thürey, N., Wojtan, C., Gross, M., and Turk, G. 2010. A multiscale approach to mesh-based surface tension flows. In ACM SIGGRAPH 2010 Papers. ACM, New York, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Turk, G. and O'brien, J. F. 2002. Modelling with implicit surfaces that interpolate. ACM Trans. Graph. 21, 4, 855--873. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O'Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. In Proceedings of the ACM SIGGRAPH'10 Conference. 49: 111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. In ACM SIGGRAPH 2009 Papers. ACM, 76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2010. Physics-Inspired topology changes for thin fluid features. In ACM SIGGRAPH 2010 Papers. ACM, New York, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zaharescu, A., Boyer, E., and Horaud, R. 2007. Transformesh: A topology-adaptive mesh-based approach to surface evolution. In Proceedings of the Computer Vision Conference. 166--175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Zaharescu, A., Boyer, E., and Horaud, R. P. 2011. Topology-adaptive mesh deformation for surface evolution, morphing, and multi-view reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 33, 4, 823--837. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Topology-adaptive interface tracking using the deformable simplicial complex

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 31, Issue 3
            May 2012
            92 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2167076
            Issue’s Table of Contents

            Copyright © 2012 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 5 June 2012
            • Accepted: 1 January 2012
            • Revised: 1 December 2011
            • Received: 1 October 2010
            Published in tog Volume 31, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader