skip to main content
research-article

On filtering the noise from the random parameters in Monte Carlo rendering

Published:31 May 2012Publication History
Skip Abstract Section

Abstract

Monte Carlo (MC) rendering systems can produce spectacular images but are plagued with noise at low sampling rates. In this work, we observe that this noise occurs in regions of the image where the sample values are a direct function of the random parameters used in the Monte Carlo system. Therefore, we propose a way to identify MC noise by estimating this functional relationship from a small number of input samples. To do this, we treat the rendering system as a black box and calculate the statistical dependency between the outputs and inputs of the system. We then use this information to reduce the importance of the sample values affected by MC noise when applying an image-space, cross-bilateral filter, which removes only the noise caused by the random parameters but preserves important scene detail. The process of using the functional relationships between sample values and the random parameter inputs to filter MC noise is called Random Parameter Filtering (RPF), and we demonstrate that it can produce images in a few minutes that are comparable to those rendered with a thousand times more samples. Furthermore, our algorithm is general because we do not assign any physical meaning to the random parameters, so it works for a wide range of Monte Carlo effects, including depth of field, area light sources, motion blur, and path-tracing. We present results for still images and animated sequences at low sampling rates that have higher quality than those produced with previous approaches.

Skip Supplemental Material Section

Supplemental Material

tp141_12.mp4

References

  1. Arvo, J. and Kirk, D. 1990. Particle transport and image synthesis. In Proceedings of the ACM SIGGRAPH Annual Conference on Computer Graphics (SIGGRAPH'90). ACM Press, New York, 63--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Blender. 2011. Bilateral blur filter compositing node for denoising ray-traced ambient occlusion. http://www.blender.org/development/release-logs/blender-246/compositing-nodes/.Google ScholarGoogle Scholar
  3. Cook, R. L., Porter, T., and Carpenter, L. 1984. Distributed ray tracing. In Proceedings of the ACM SIGGRAPH Annual Conference on Computer Graphics (SIGGRAPH'84). ACM Press, New York, 137--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cover, T. and Thomas, J. 2006. Elements of Information Theory 2nd Ed. John Wiley & Sons, Hoboken, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dammertz, H., Sewtz, D., Hanika, J., and Lensch, H. P. 2010. Edge-Avoiding A-trous wavelet transform for fast global illumination filtering. In Proceedings of the High Performance Graphics Conference. 67--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. DeCoro, C., Weyrich, T., and Rusinkiewicz, S. 2010. Density-Based outlier rejection in Monte Carlo rendering. In Proceedings of the Pacific Graphics Conference. Vol. 29.Google ScholarGoogle Scholar
  7. Deering, M., Winner, S., Schediwy, B., Duffy, C., and Hunt, N. 1988. The triangle processor and normal vector shader: A VLSI system for high performance graphics. In Proceedings of the ACM SIGGRAPH Annual Conference on Computer Graphics (SIGGRAPH'88). ACM Press, New York, 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dutré, P., Bala, K., and Bekaert, P. 2006. Advanced Global Illumination. A. K. Peters. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Egan, K., Tseng, Y.-T., Holzschuch, N., Durand, F., and Ramamoorthi, R. 2009. Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans. Graph. 28, 3, 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Eisemann, E. and Durand, F. 2004. Flash photography enhancement via intrinsic relighting. ACM Trans. Graph. 23, 673--678. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H. W. 2008. Multi-Dimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27, 3, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hastie, T., Tibshirani, R., and Friedman, J. H. 2001. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York.Google ScholarGoogle Scholar
  13. Jensen, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jensen, H. W. and Christensen, N. J. 1995. Optimizing path tracing using noise reduction techniques. In Proceedings of the Winter School of Computer Graphics Conference (WSCG'95). 134--142.Google ScholarGoogle Scholar
  15. Keller, A. 1998. Quasi-Monte Carlo methods for photorealistic image synthesis. Ph.D. thesis, Universität Kaiserslautern.Google ScholarGoogle Scholar
  16. Laine, S., Saransaari, H., Kontkanen, J., Lehtinen, J., and Aila, T. 2007. Incremental instant radiosity for real-time indirect illumination. In Proceedings of the Eurographics Symposium on Rendering. Eurographics Association, 277--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lee, M. and Redner, R. 1990. A note of the use of nonlinear filtering in computer graphics. IEEE Comput. Graph. Appl. 10, 3, 23--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. LuxRender. 2011. http://www.luxrender.net/.Google ScholarGoogle Scholar
  19. Mahalanobis, P. C. 1936. On the generalized distance in statistics. Proc. Nat. Inst. Sci. India 2, 1, 49--55.Google ScholarGoogle Scholar
  20. McCool, M. D. 1999. Anisotropic diffusion for Monte Carlo noise reduction. ACM Trans. Graph. 18, 2, 171--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Meyer, M. and Anderson, J. 2006. Statistical acceleration for animated global illumination. ACM Trans. Graph. 25, 3, 1075--1080. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mitchell, D. P. 1991. Spectrally optimal sampling for distribution ray tracing. SIGGRAPH Comput. Graph. 25, 4, 157--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Overbeck, R. S., Donner, C., and Ramamoorthi, R. 2009. Adaptive wavelet rendering. ACM Trans. Graph. 28, 5, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Peng, H. 2007. Matlab package for mutual information computation. http://www.mathworks.com/matlabcentral/fileexchange/14888.Google ScholarGoogle Scholar
  25. Perona, P. and Malik, J. 1990. Scale-Space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 7, 629--639. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., and Toyama, K. 2004. Digital photography with flash and no-flash image pairs. ACM Trans. Graph. 23, 664--672. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Pharr, M. and Humphreys, G. 2010. Physically Based Rendering: From Theory to Implementation, 2nd Ed. Morgan Kaufmann Publishers, San Fransisco, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Rushmeier, H. E. and Ward, G. J. 1994. Energy preserving non-linear filters. In Proceedings of the ACM SIGGRAPH Annual Conference on Computer Graphics (SIGGRAPH'94). ACM Press, New York, 131--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Saito, T. and Takahashi, T. 1990. Comprehensible rendering of 3-D shapes. In Proceedings of the ACM SIGGRAPH Annual Conference on Computer Graphics (SIGGRAPH'90). ACM Press, New York, 197--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sbert, M., Feixas, M., Rigau, J., Viola, I., and Chover, M. 2007. Applications of information theory to computer graphics. In Proceedings of the Eurographics Conference. 625--704.Google ScholarGoogle Scholar
  31. Segovia, B., Iehl, J. C., Mitanchey, R., and Péroche, B. 2006. Non-Interleaved deferred shading of interleaved sample patterns. In Proceedings of the ACM Symposium on Graphics Hardware. ACM Press, New York, 53--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sen, P. and Darabi, S. 2010. Compressive estimation for signal integration in rendering. Comput. Graph. Forum 29, 4, 1355--1363. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sen, P. and Darabi, S. 2011a. Compressive rendering: A rendering application of compressed sensing. IEEE Trans. Vis. Comput. Graph. 17, 487--499. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sen, P. and Darabi, S. 2011b. Implementation of Random Parameter Filtering. Tech. rep. EECE-TR-11-0004, University of New Mexico.Google ScholarGoogle Scholar
  35. Soler, C., Subr, K., Durand, F., Holzschuch, N., and Sillion, F. 2009. Fourier depth of field. ACM Trans. Graph. 28, 2, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Tomasi, C. and Manduchi, R. 1998. Bilateral filtering for gray and color images. In Proceedings of the International Conference on Computer Vision (ICCV'98). IEEE, 839. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Walter, B., Arbree, A., Bala, K., and Greenberg, D. P. 2006. Multidimensional lightcuts. ACM Trans. Graph. 25, 3, 1081--1088. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Ward, G. J., Rubinstein, F. M., and Clear, R. D. 1988. A ray tracing solution for diffuse interreflection. In Proceedings of the ACM SIGGRAPH Annual Conference on Computer Graphics (SIGGRAPH'88). ACM Press, New York, 85--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Whitted, T. 1980. An improved illumination model for shaded display. Comm. ACM 33, 343--349. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Xu, R. and Pattanaik, S. N. 2005. A novel Monte Carlo noise reduction operator. IEEE Comput. Graph. Appl. 25, 31--35. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. On filtering the noise from the random parameters in Monte Carlo rendering

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 31, Issue 3
      May 2012
      92 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2167076
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 31 May 2012
      • Accepted: 1 October 2011
      • Revised: 1 September 2011
      • Received: 1 January 2011
      Published in tog Volume 31, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader