skip to main content
research-article

Soft body locomotion

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

We present a physically-based system to simulate and control the locomotion of soft body characters without skeletons. We use the finite element method to simulate the deformation of the soft body, and we instrument a character with muscle fibers to allow it to actively control its shape. To perform locomotion, we use a variety of intuitive controls such as moving a point on the character, specifying the center of mass or the angular momentum, and maintaining balance. These controllers yield an objective function that is passed to our optimization solver, which handles convex quadratic program with linear complementarity constraints. This solver determines the new muscle fiber lengths, and moreover it determines whether each point of contact should remain static, slide, or lift away from the floor. Our system can automatically find an appropriate combination of muscle contractions that enables a soft character to fulfill various locomotion tasks, including walking, jumping, crawling, rolling and balancing.

Skip Supplemental Material Section

Supplemental Material

tp105_12.mp4

References

  1. Abe, Y., da Silva, M., and Popović, J. 2007. Multiobjective control with frictional contacts. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '07, 249--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Allard, J., Faure, F., Courtecuisse, H., Falipou, F., Duriez, C., and Kry, P. G. 2010. Volume contact constraints at arbitrary resolution. ACM Trans. Graph. 29 (July), 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Anitescu, M., and Potra, F. A. 1997. Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dynamics 14, 231--247.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bai, L., Mitchell, J. E., and Pang, J.-S. 2011. On convex quadratic programs with linear complementarity constraints. In submission.Google ScholarGoogle Scholar
  5. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, SIGGRAPH '98, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Barbič, J., and James, D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Transactions on Graphics (SIGGRAPH 2005) 24, 3 (Aug.), 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Barbič, J., and Popović, J. 2008. Real-time control of physically based simulations using gentle forces. ACM Trans. on Graphics (SIGGRAPH Asia 2008) 27, 5, 163:1--163:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. ACM Trans. on Graphics (SIGGRAPH 2009) 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bathe, K.-J. 2007. Finite Element Procedures. Prentice-Hall, London.Google ScholarGoogle Scholar
  11. Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. 2007. TRACKS: Toward Directable Thin Shells. ACM Transactions on Graphics (SIGGRAPH) 26, 3 (jul), 50:1--50:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Braun, S., and Mitchell, J. E. 2005. A semidefinite programming heuristic for quadratic programming problems with complementarity constraints. Computational Optimization and Application 31, 5--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. In Proceedings of the 29th annual conference on Computer graphics and interactive techniques, SIGGRAPH '02, 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. DiLorenzo, P. C., Zordan, V. B., and Sanders, B. L. 2008. Laughing out loud: control for modeling anatomically inspired laughter using audio. In ACM SIGGRAPH Asia 2008 papers, SIGGRAPH Asia '08, 125:1--125:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Erleben, K. 2007. Velocity-based shock propagation for multibody dynamics animation. ACM Trans. Graph. 26 (June). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Grzeszczuk, R., and Terzopoulos, D. 1995. Automated learning of muscle-actuated locomotion through control abstraction. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, 63--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hu, J., Mitchell, J. E., Pang, J.-S., Bennett, K. P., and Kunapuli, G. 2008. On the global solution of linear programs with linear complementarity constraints. SIAM Journal on Optimization 19, 445--471. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '04, 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Irving, G., Schroeder, C., and Fedkiw, R. 2007. Volume conserving finite element simulations of deformable models. ACM Trans. Graph. 26 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jain, S., Ye, Y., and Liu, C. K. 2009. Optimization-based interactive motion synthesis. ACM Transaction on Graphics 28, 1, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. James, D. L., and Pai, D. K. 2003. Multiresolution Green's function methods for interactive simulation of large-scale elastostatic objects. ACM Trans. Graph. 22 (January), 47--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kaufman, D. M., Sueda, S., James, D. L., and Pai, D. K. 2008. Staggered projections for frictional contact in multibody systems. ACM Trans. Graph. 27 (December), 164:1--164:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kier, W. M. 1985. Tongues, tentacles and trunks: The biomechanics of movement in muscular-hydrostats. Zoological Journal of the Linnean Society 83, 307--324.Google ScholarGoogle Scholar
  24. Kim, T., and James, D. L. 2009. Skipping steps in deformable simulation with online model reduction. ACM Trans. Graph. 28 (December), 123:1--123:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kim, J., and Pollard, N. S. 2011. Direct control of simulated non-human characters. IEEE Computer Graphics and Applications 31, 4 (July), 56--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kim, J., and Pollard, N. S. 2011. Fast simulation of skeleton-driven deformable body characters. ACM Transactions on Graphics 30, 5 (October). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kondo, R., Kanai, T., and Anjyo, K.-i. 2005. Directable animation of elastic objects. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '05, 127--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lee, S.-H., and Terzopoulos, D. 2006. Heads Up! Biomechanical Modeling and Neuromuscular Control of the Neck. ACM Transactions on Graphics 25, 3 (July), 1188--1198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28 (September), 99:1--99:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Macchietto, A., Zordan, V., and Shelton, C. R. 2009. Momentum control for balance. ACM Trans. Graph. 28 (July), 80:1--80:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. ACM Trans. Graph. 30 (Aug.), 72:1--72:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Miller, G. S. P. 1988. The motion dynamics of snakes and worms. SIGGRAPH Comput. Graph. 22 (June), 169--173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '02, 49--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Nesme, M., Payan, Y., and Faure, F. 2005. Efficient, physically plausible finite elements. In Eurographics 2005, Short papers, August, 2005, J. Dingliana and F. Ganovelli, Eds.Google ScholarGoogle Scholar
  35. O'Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques, SIGGRAPH '99, 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Otaduy, M. A., Tamstorf, R., Steinemann, D., and Gross, M. 2009. Implicit contact handling for deformable objects. Computer Graphics Forum (Proc. of Eurographics) 28, 2 (apr).Google ScholarGoogle ScholarCross RefCross Ref
  37. Si, H., 2006. Tetgen: A quality tetrahedral mesh generator and a 3D Delaunay triangulator, January.Google ScholarGoogle Scholar
  38. Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. 24 (July), 417--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Stewart, D., and Trinkle, J. C. 1996. An implicit time-stepping scheme for rigid body dynamics with Coulomb friction. International Journal of Nnumerical Methods in Engineering 39, 2673--2691.Google ScholarGoogle ScholarCross RefCross Ref
  40. Sueda, S., Kaufman, A., and Pai, D. K. 2008. Musculotendon simulation for hand animation. ACM Trans. Graph. 27 (August), 83:1--83:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Teran, J., Blemker, S., Hing, V. N. T., and Fedkiw, R. 2003. Finite volume methods for the simulation of skeletal muscle. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '03, 68--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Teran, J., Sifakis, E., Blemker, S. S., Ng-Thow-Hing, V., Lau, C., and Fedkiw, R. 2005. Creating and simulating skeletal muscle from the visible human data set. IEEE Transactions on Visualization and Computer Graphics 11 (May), 317--328. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proceedings of the 14th annual conference on Computer graphics and interactive techniques, SIGGRAPH '87, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Tsang, W., Singh, K., and Fiume, E. 2005. Helping hand: an anatomically accurate inverse dynamics solution for unconstrained hand motion. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '05, 319--328. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Tu, X., and Terzopoulos, D. 1994. Artificial fishes: Physics, locomotion, perception, behavior. In Proceedings of the 21st annual conference on Computer graphics and interactive techniques, ACM, 43--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Zordan, V. B., Celly, B., Chiu, B., and DiLorenzo, P. C. 2006. Breathe easy: model and control of human respiration for computer animation. Graph. Models 68 (March), 113--132. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Soft body locomotion

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 4
        July 2012
        935 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2185520
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2012
        Published in tog Volume 31, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader