skip to main content
research-article

Continuous character control with low-dimensional embeddings

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

Interactive, task-guided character controllers must be agile and responsive to user input, while retaining the flexibility to be readily authored and modified by the designer. Central to a method's ease of use is its capacity to synthesize character motion for novel situations without requiring excessive data or programming effort. In this work, we present a technique that animates characters performing user-specified tasks by using a probabilistic motion model, which is trained on a small number of artist-provided animation clips. The method uses a low-dimensional space learned from the example motions to continuously control the character's pose to accomplish the desired task. By controlling the character through a reduced space, our method can discover new transitions, tractably precompute a control policy, and avoid low quality poses.

Skip Supplemental Material Section

Supplemental Material

References

  1. Arikan, O., and Forsyth, D. A. 2002. Interactive motion generation from examples. ACM Transactions on Graphics 21, 3, 483--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bertsekas, D. P. 2001. Dynamic Programming and Optimal Control. Athena Scientific, Belmont, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chai, J., and Hodgins, J. K. 2007. Constraint-based motion optimization using a statistical dynamic model. ACM Transactions on Graphics 26, 3, 8:1--8:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Geiger, A., Urtasun, R., and Darrell, T. 2009. Rank priors for continuous non-linear dimensionality reduction. In Proc. CVPR, IEEE, 880--887.Google ScholarGoogle Scholar
  5. Grochow, K., Martin, S. L., Hertzmann, A., and Popović, Z. 2004. Style-based inverse kinematics. ACM Transactions on Graphics 23, 3, 522--531. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Hsu, E., Pulli, K., and Popovic, J. 2005. Style translation for human motion. ACM Transactions on Graphics 24, 3, 1082--1089. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ikemoto, L., Arikan, O., and Forsyth, D. 2009. Generalizing motion edits with gaussian processes. ACM Transactions on Graphics 28, 1, 1:1--1:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Johansen, R. S. 2009. Automated Semi-Procedural Animation for Character Locomotion. Master's thesis, Aarhus University.Google ScholarGoogle Scholar
  9. Kalbfleisch, J. D., and Lawless, J. F. 1985. The analysis of panel markov data under a assumption. Journal of the American Statistical Association 80, 392, 863--871.Google ScholarGoogle ScholarCross RefCross Ref
  10. Kondor, R. I., and Vert, J.-P. 2004. Diffusion kernels. In Kernel Methods in Computational Biology. The MIT Press, 171--192.Google ScholarGoogle Scholar
  11. Kovar, L., Gleicher, M., and Pighin, F. H. 2002. Motion graphs. ACM Transactions on Graphics 21, 3, 473--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Lau, M., Bar-Joseph, Z., and Kuffner, J. 2009. Modeling spatial and temporal variation in motion data. ACM Transactions on Graphics 28, 5, 171:1--171:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Lawrence, N. D., and Quiñonero Candela, J. 2006. Local distance preservation in the GP-LVM through back constraints. In Proc. ICML, ACM, 513--520. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Lawrence, N. D. 2005. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research 6, 1783--1816. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Lawrence, N. D. 2006. The Gaussian process latent variable model. Tech. rep., University of Sheffield.Google ScholarGoogle Scholar
  16. Lawrence, N. D. 2007. Learning for larger datasets with the gaussian process latent variable model. Journal of Machine Learning Research 2, 243--250.Google ScholarGoogle Scholar
  17. Lee, J., and Lee, K. H. 2006. Precomputing avatar behavior from human motion data. Graphical Models 68, 2, 158--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard, N. S. 2002. Interactive control of avatars animated with human motion data. ACM Transactions on Graphics 21, 3, 491--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lee, Y., Lee, S. J., and Popović, Z. 2009. Compact character controllers. ACM Transactions on Graphics 28, 5, 169:1--169:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lee, Y., Wampler, K., Bernstein, G., Popović, J., and Popović, Z. 2010. Motion fields for interactive character locomotion. ACM Transactions on Graphics 29, 6, 138:1--138:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lo, W.-Y., and Zwicker, M. 2008. Real-time planning for parameterized human motion. In Symposium on Computer Animation, ACM/Eurographics, 29--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. McCann, J., and Pollard, N. 2007. Responsive characters from motion fragments. ACM Transactions on Graphics 26, 3, 6:1--6:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Min, J., Chen, Y.-L., and Chai, J. 2009. Interactive generation of human animation with deformable motion models. ACM Transactions on Graphics 29, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Mukai, T., and Kuriyama, S. 2005. Geostatistical motion interpolation. ACM Transactions on Graphics 24, 3, 1062--1070. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ormoneit, D., and Sen, S. 2002. Kernel-based reinforcement learning. Machine Learning 49, 2-3, 161--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Quiñonero Candela, J., and Rasmussen, C. E. 2005. A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research 6, 1939--1959. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ren, C., Zhao, L., and Safonova, A. 2010. Human motion synthesis with optimization-based graphs. Computer Graphics Forum 29, 2, 545--554.Google ScholarGoogle ScholarCross RefCross Ref
  28. Rose, C., Cohen, M. F., and Bodenheimer, B. 1998. Verbs and adverbs: Multidimensional motion interpolation. IEEE Computer Graphics and Applications 18, 5, 32--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Shin, H. J., and Lee, J. 2006. Motion synthesis and editing in low-dimensional spaces. Journal of Visualization and Computer Animation 17, 3-4, 219--227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Shin, H. J., and Oh, H. S. 2006. Fat Graphs: Constructing an interactive character with continuous controls. In Symposium on Computer Animation, ACM/Eurographics, 291--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Titsias, M. K., and Lawrence, N. D. 2010. Bayesian gaussian process latent variable model. Journal of Machine Learning Research 9, 844--851.Google ScholarGoogle Scholar
  32. Treuille, A., Lee, Y., and Popović, Z. 2007. Near-optimal character animation with continuous control. ACM Transactions on Graphics 26, 3, 7:1--7:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Urtasun, R., Fleet, D. J., Hertzmann, A., and Fua, P. 2005. Priors for people tracking from small training sets. In Proc. ICCV, IEEE, 403--410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Urtasun, R., Fleet, D. J., Geiger, A., Popović, J., Darrell, T. J., and Lawrence, N. D. 2008. Topologically-constrained latent variable models. In Proc. ICML, ACM, 1080--1087. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Walder, C., Kim, K. I., and Schölkopf, B. 2008. Sparse multiscale Gaussian process regression. In Proc. ICML, ACM, 1112--1119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Wang, J. M., Fleet, D. J., and Hertzmann, A. 2007. Multi-factor Gaussian process models for style-content separation. In Proc. ICML, ACM, 975--982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wang, J. M., Fleet, D. J., and Hertzmann, A. 2008. Gaussian process dynamical models for human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 2, 283--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wei, X. K., Min, J., and Chai, J. 2011. Physically valid statistical models for human motion generation. ACM Transactions on Graphics 30, 3, 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Ye, Y., and Liu, C. K. 2010. Synthesis of responsive motion using a dynamic model. Computer Graphics Forum 29, 2, 555--562.Google ScholarGoogle ScholarCross RefCross Ref
  40. Zhao, L., and Safonova, A. 2009. Achieving good connectivity in motion graphs. Graphical Models 71, 4, 139--152. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Continuous character control with low-dimensional embeddings

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 31, Issue 4
      July 2012
      935 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2185520
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 July 2012
      Published in tog Volume 31, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader