skip to main content
research-article

Schelling points on 3D surface meshes

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

This paper investigates "Schelling points" on 3D meshes, feature points selected by people in a pure coordination game due to their salience. To collect data for this investigation, we designed an online experiment that asked people to select points on 3D surfaces that they expect will be selected by other people. We then analyzed properties of the selected points, finding that: 1) Schelling point sets are usually highly symmetric, and 2) local curvature properties (e.g., Gauss curvature) are most helpful for identifying obvious Schelling points (tips of protrusions), but 3) global properties (e.g., segment centeredness, proximity to a symmetry axis, etc.) are required to explain more subtle features. Based on these observations, we use regression analysis to combine multiple properties into an analytical model that predicts where Schelling points are likely to be on new meshes. We find that this model benefits from a variety of surface properties, particularly when training data comes from examples in the same object class.

Skip Supplemental Material Section

Supplemental Material

tp100_12.mp4

References

  1. Alexa, M. 2000. Merging polyhedral shapes with scattered features. Visual Computer 16, 26--37.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Amazon, 2009. Mechanical turk. http://www.mturk.com.Google ScholarGoogle Scholar
  3. Attneave, F. 1954. Some informational aspects of visual perception. Psychological Review 61, 3.Google ScholarGoogle ScholarCross RefCross Ref
  4. Breiman, L. 2001. Random forests. Machine Learning 45, 1, 5--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bronstein, A., Bronstein, M., and Kimmel, R. 2006. Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Science, 1168--1172.Google ScholarGoogle Scholar
  6. Bronstein, A., Bronstein, M., Bustos, B., Castellani, U., Crisani, M., Falcidieno, B., Guibas, L., Kokkinos, I., Murino, V., Ovsjanikov, M., Patane, G., Sipiran, I., Spagnuolo, M., and Sun, J. 2010. SHREC 2011: robust feature detection and description benchmark. In Eurographics Workshop on 3D Object Retrieval. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Castellani, U., Cristani, M., Fantoni, S., and Murino, V. 2008. Sparse points matching by combining 3d mesh saliency with statistical descriptors. Computer Graphics Forum 27, 2, 643--652.Google ScholarGoogle ScholarCross RefCross Ref
  8. Chen, X., Golovinskiy, A., and Funkhouser, T. 2009. A benchmark for 3D mesh segmentation. ACM Transactions on Graphics (Proc. SIGGRAPH) 28, 3 (Aug.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chua, C., and Jarvis, R. 1996. Point signatures: A new representation for 3D object recognition. International Journal of Computer Vision 25, 1, 63--85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H. S., Finkelstein, A., Funkhouser, T., and Rusinkiewicz, S. 2008. Where do people draw lines? ACM Transactions on Graphics (Proc. SIGGRAPH) 27, 3 (Aug.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A., Funkhouser, T., and an d Manish Singh, S. R. 2009. How well do line drawings depict shape? ACM Transactions on Graphics (Proc. SIGGRAPH) 28, 3 (Aug.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Funkhouser, T., and Shilane, P. 2006. Partial matching of 3d shapes with priority-driven search. In Symposium on Geometry Processing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gal, R., and Cohen-Or, D. 2006. Salient geometric features for partial shape matching and similarity. ACM Transaction on Graphics (January). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Garland, M., and Heckbert, P. S. 1997. Surface simplification using quadric error metrics. In Proceedings of SIGGRAPH 1997, Computer Graphics Proceedings, Annual Conference Series, 209--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Giorgi, D., Biasotti, S., and Paraboschi, L., 2007. SHREC:SHape REtrieval Contest: Watertight models track, http://watertight.ge.imati.cnr.it/.Google ScholarGoogle Scholar
  16. Heer, J., and Bostock, M. 2010. Crowdsourcing graphical perception: Using Mechanical Turk to assess visualization design. In ACM Human Factors in Computing Systems (CHI), 203--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hisada, M., Belyaev, A., and Kunii, T. 2002. A skeleton-based approach for detection of perceptually salient features on polygonal surfaces. Computer Graphics Forum 21, 4, 689--700.Google ScholarGoogle ScholarCross RefCross Ref
  18. Hoffman, D. D., and Singh, M. 1997. Salience of visual parts. vol. 63.Google ScholarGoogle Scholar
  19. Huang, T., Cheng, K., and Chuang, Y. 2009. A collaborative benchmark for region of interest detection algorithms. 296--303.Google ScholarGoogle Scholar
  20. Itti, L., Koch, C., and Neibur, E. 1998. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 11, 1254--1259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Johnson, A. 2000. Surface landmark selection and matching in natural terrain. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, 413--420. Using saliency in choosing spin images.Google ScholarGoogle ScholarCross RefCross Ref
  22. Kalogerakis, E., Hertzmann, A., and Singh, K. 2010. Learning 3d mesh segmentation and labeling. ACM Transactions on Graphics (proc. SIGGRAPH) 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Katz, S., Leifman, G., and Tal, A. 2005. Mesh segmentation using feature point and core extraction. Visual Computer (September).Google ScholarGoogle Scholar
  24. Kim, Y., Varshney, A., and adn François Guimbretière, D. J. 2010. Mesh saliency and human eye fixations. ACM Transactions on Applied Perception 7, 2 (February). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kim, V., Lipman, Y., and Funkhouser, T. 2011. Blended intrinsic maps. ACM Transactions on Graphics (SIGGRAPH 2011) (jul). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ko, B., and Nam, J. 2006. Object-of-interest image segmentation based on human attention and semantic region clustering. J Opt Soc Am A Opt Image Sci Vis 23, 10 (October), 2462--2470.Google ScholarGoogle ScholarCross RefCross Ref
  27. Koch, C., and Ullman, S. 1985. Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology 4, 219--227.Google ScholarGoogle Scholar
  28. Kraevoy, V., and Sheffer, A. 2004. Cross-parameterization and compatible remeshing of 3d models. ACM Transactions on Graphics (Proc SIGGRAPH) 23, 3, 861--869. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lee, C. H., Varshney, A., and Jacobs, D. W. 2005. Mesh saliency. ACM Transactions on Graphics (SIGGRAPH 2005) (aug). Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Lewis, D. 1969. Convention: A Philosophical Study. Harvard University Press.Google ScholarGoogle Scholar
  31. Li, X., and Guskov, I. 2005. Multi-scale features for approximate alignment of point-based surfaces. In Symposium on Geometry Processing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Li, X., and Guskov, I. 2007. 3d object recognition from range images using pyramid matching. In Workshop on 3D Representation for Recognition (3dRR).Google ScholarGoogle Scholar
  33. Lipman, Y., and Funkhouser, T. 2009. Mobius voting for surface correspondence. ACM Transactions on Graphics (SIGGRAPH 2009) (August). Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Milanes, R., Wechsler, H., Gil, S., Bost, J., and Pun, T. 1994. Integration of bottom-up and top-down cues for visual attention using non-linear relaxation. IEEE Computer Vision and Pattern Recognition, 781--785.Google ScholarGoogle Scholar
  35. Moreels, P., and Perona, P. 2007. Evaluation of features detectors and descriptors based on 3d objects. IJCV 73, 3 (July), 263--284. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Novotni, M., Degener, P., and Klein, R. 2005. Correspondence generation and matching of 3d shape subparts. Tech. Rep. CG-2005-2, Universität Bonn, June.Google ScholarGoogle Scholar
  37. Parker, P. 2011. Webster's On-line Dictionary: The Rosetta Edition. http://www.websters-online-dictionary.org.Google ScholarGoogle Scholar
  38. Privitera, C., and Stark, L. 2000. Algorithms for defining visual regions-of-interest: Comparison with eye fixations. PAMI 22, 9 (September), 970--982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Rosenholtz, R. 1999. A simple saliency model predicts a number of motion popout phenomena. Vision Research 39, 19, 3157--3163.Google ScholarGoogle ScholarCross RefCross Ref
  40. Rusinkiewicz, S. 2004. Estimating curvatures and their derivatives on triangle meshes. In Symposium on 3D Data Processing, Visualization, and Transmission. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Santella, A., and DeCarlo, D. 2004. Robust clustering of eye movement recordings for quantification of visual interest. In Eye Tracking Research and Applications (ETRA), 27--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Schelling, T. 1960. The Strategy of Conflict. Harvard University Press.Google ScholarGoogle Scholar
  43. Schlattmann, M., Degener, P., and Klein, R. 2008. Scale space based feature point detection on surfaces. Journal of WSCG 16 (February).Google ScholarGoogle Scholar
  44. Schmid, C., Mohr, R., and Bauckhage, C. 2000. Evaluation of interest point detectors. IJCV 37, 2 (June), 151--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Sebe, N., and Lew, M. 2003. Comparing salient point detectors. Pattern Recognition Letters 24, 1-3 (January), 89--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Shapira, L., Shamir, A., and Cohen-Or, D. 2008. Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24, 4, 249--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Shilane, P., and Funkhouser, T. 2007. Distinctive regions of 3d surfaces. ACM Transactions on Graphics 26, 2 (June). Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Simpson, J. 1989. Oxford English Dictionary, Second Edition. Oxford University Press. http://dictionary.oed.com.Google ScholarGoogle Scholar
  49. Sonthi, R., Kunjur, G., and Gadh, R. 1997. Shape feature determination using the curvature region representation. In Proc. Solid Modeling, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Stark, M., and Schiele, B. 2007. How good are local features for classes of geometric objects. 1--8.Google ScholarGoogle Scholar
  51. Sumner, R., and Popovic, J. 2004. Deformation transfer for triangle meshes. ACM Transactions on Graphics (Proc SIGGRAPH) 23, 3, 399--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Sun, J., Ovsjanikov, M., and Guibas, L. 2009. A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion. In Computer Graphics Forum, vol. 28, Wiley Online Library, 1383--1392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Tsotsos, J., Culhane, S., Wai, W., Lai, Y., Davis, N., and Nuflo, F. 1995. Modeling visual-attention via selective tuning. Artificial Intelligence 78, 1-2, 507--545. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D. 2010. A survey on shape correspondence. In Proc. of Eurographics State-of-the-art Report.Google ScholarGoogle Scholar
  55. Von Ahn, L., and Dabbish, L. 2008. Designing games with a purpose. Communications of the ACM 51, 8, 58--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Witten, I. H., and Frank, E. 2005. Data mining: Practical machine learning tools and techniques, 2nd edition. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Xu, K., Zhang, H., Tagliasacchi, A., Liu, L., Li, G., Meng, M., and Xiong, Y. 2009. Partial intrinsic reflectional symmetry of 3d shapes. ACM Transactions on Graphics, (Proceedings SIGGRAPH Asia 2009) 28, 5, to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Zaharescu, A., Boyer, E., Varanasi, K., and Horaud, R. 2009. Surface feature detection and description with applications to mesh matching. In CVPR.Google ScholarGoogle Scholar
  59. Zhang, E., Mischaikow, K., and Turk, G. 2005. Feature-based surface parameterization and texture mapping. ACM Transactions on Graphics 24, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., van Kaick, O., and Tagliasacchi, A. 2008. Deformation-driven shape correspondence. Comput. Graph. Forum 27, 5, 1431--1439. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Zhou, Y., and Huang, Z. 2004. Decomposing polygon meshes by means of critical points. In MMM, 187--195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Zuliani, M., Kenney, C., and Manjunath, B. 2004. A mathematical comparison of point detectors. In Computer Vision and Pattern Recognition Workshop, 172. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Schelling points on 3D surface meshes
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 4
        July 2012
        935 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2185520
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2012
        Published in tog Volume 31, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader