skip to main content
research-article

Practical temporal consistency for image-based graphics applications

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

We present an efficient and simple method for introducing temporal consistency to a large class of optimization driven image-based computer graphics problems. Our method extends recent work in edge-aware filtering, approximating costly global regularization with a fast iterative joint filtering operation. Using this representation, we can achieve tremendous efficiency gains both in terms of memory requirements and running time. This enables us to process entire shots at once, taking advantage of supporting information that exists across far away frames, something that is difficult with existing approaches due to the computational burden of video data. Our method is able to filter along motion paths using an iterative approach that simultaneously uses and estimates per-pixel optical flow vectors. We demonstrate its utility by creating temporally consistent results for a number of applications including optical flow, disparity estimation, colorization, scribble propagation, sparse data up-sampling, and visual saliency computation.

Skip Supplemental Material Section

Supplemental Material

tp115_12.mp4

References

  1. Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., and Szeliski, R. 2011. A database and evaluation methodology for optical flow. International Journal of Computer Vision 92, 1, 1--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bhat, P., Zitnick, C. L., Cohen, M. F., and Curless, B. 2010. Gradientshop: A gradient-domain optimization framework for image and video filtering. ACM Trans. Graph. 29, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chen, J., Paris, S., and Durand, F. 2007. Real-time edge-aware image processing with the bilateral grid. ACM Trans. Graph. 26, 3, 103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Criminisi, A., Sharp, T., Rother, C., and Pérez, P. 2010. Geodesic image and video editing. ACM Trans. Graph. 29, 5, 134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dolson, J., Baek, J., Plagemann, C., and Thrun, S. 2010. Upsampling range data in dynamic environments. In CVPR, 1141--1148.Google ScholarGoogle Scholar
  6. Durand, F., and Dorsey, J. 2002. Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graph. 21, 3, 257--266. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Gastal, E. S. L., and Oliveira, M. M. 2011. Domain transform for edge-aware image and video processing. ACM Trans. Graph. 30, 4, 69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Guo, C., Ma, Q., and Zhang, L. 2008. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In CVPR, IEEE Computer Society.Google ScholarGoogle Scholar
  9. He, K., Sun, J., and Tang, X. 2010. Guided image filtering. In ECCV (1), Springer, vol. 6311 of Lecture Notes in Computer Science, 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Höffken, M., Oberhoff, D., and Kolesnik, M. 2011. Temporal prediction and spatial regularization in differential optical flow. In ACIVS, Springer, vol. 6915 of Lecture Notes in Computer Science, 576--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Horn, B. K. P., and Schunck, B. G. 1981. Determining optical flow. Artif. Intell. 17, 1--3, 185--203.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hosni, A., Rhemann, C., Bleyer, M., and Gelautz, M. 2011. Temporally consistent disparity and optical flow via efficient spatio-temporal filtering. In PSIVT (1), Springer, vol. 7087 of Lecture Notes in Computer Science, 165--177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kopf, J., Cohen, M. F., Lischinski, D., and Uyttendaele, M. 2007. Joint bilateral upsampling. ACM Trans. Graph. 26, 3, 96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Krähenbühl, P., Lang, M., Hornung, A., and Gross, M. H. 2009. A system for retargeting of streaming video. ACM Trans. Graph. 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. ACM Trans. Graph. 23, 3, 689--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Levin, A., Lischinski, D., and Weiss, Y. 2006. A closed form solution to natural image matting. In CVPR (1), IEEE Computer Society, 61--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Nehab, D., Maximo, A., Lima, R. S., and Hoppe, H. 2011. Gpu-efficient recursive filtering and summed-area tables. ACM Trans. Graph. 30, 6, 176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Paris, S., Kornprobst, P., and Tumblin, J. 2009. Bilateral Filtering. Now Publishers Inc., Hanover, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Perona, P., and Malik, J. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 7, 629--639. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Rhemann, C., Hosni, A., Bleyer, M., Rother, C., and Gelautz, M. 2011. Fast cost-volume filtering for visual correspondence and beyond. In CVPR, IEEE, 3017--3024. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Scharstein, D., and Szeliski, R. 2002. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision 47, 1--3, 7--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Sun, D., Roth, S., and Black, M. J. 2010. Secrets of optical flow estimation and their principles. In CVPR, 2432--2439.Google ScholarGoogle Scholar
  23. Tomasi, C., and Manduchi, R. 1998. Bilateral filtering for gray and color images. In ICCV, 839--846. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Volz, S., Bruhn, A., Valgaerts, L., and Zimmer, H. 2011. Modeling temporal coherence for optical flow. In Proc. 13th International Conference on Computer Vision (ICCV), IEEE Computer Society Press, Barcelona. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Wang, O., Lang, M., Frei, M., Hornung, A., Smolic, A., and Gross, M. H. 2011. Stereobrush: Interactive 2d to 3d conversion using discontinuous warps. In SBM, Eurographics Association, 47--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Wildeboer, M. O., Yendo, T., Tehrani, M. P., and Tanimoto, M. 2010. A semi-automatic multi-view depth estimation method. Proceedings of SPIE, Visual Communications and Image Processing 7744.Google ScholarGoogle Scholar
  27. Xiao, J., Cheng, H., Sawhney, H. S., Rao, C., and Isnardi, M. A. 2006. Bilateral filtering-based optical flow estimation with occlusion detection. In ECCV (1), Springer, vol. 3951 of Lecture Notes in Computer Science, 211--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Yang, Q., Yang, R., Davis, J., and Nistér, D. 2007. Spatial-depth super resolution for range images. In CVPR, IEEE Computer Society.Google ScholarGoogle Scholar
  29. Zimmer, H., Bruhn, A., and Weickert, J. 2011. Optic flow in harmony. International Journal of Computer Vision 93, 3, 368--388. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Practical temporal consistency for image-based graphics applications

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 31, Issue 4
            July 2012
            935 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2185520
            Issue’s Table of Contents

            Copyright © 2012 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 July 2012
            Published in tog Volume 31, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader