skip to main content
research-article

Stitch meshes for modeling knitted clothing with yarn-level detail

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

Recent yarn-based simulation techniques permit realistic and efficient dynamic simulation of knitted clothing, but producing the required yarn-level models remains a challenge. The lack of practical modeling techniques significantly limits the diversity and complexity of knitted garments that can be simulated. We propose a new modeling technique that builds yarn-level models of complex knitted garments for virtual characters. We start with a polygonal model that represents the large-scale surface of the knitted cloth. Using this mesh as an input, our interactive modeling tool produces a finer mesh representing the layout of stitches in the garment, which we call the stitch mesh. By manipulating this mesh and assigning stitch types to its faces, the user can replicate a variety of complicated knitting patterns. The curve model representing the yarn is generated from the stitch mesh, then the final shape is computed by a yarn-level physical simulation that locally relaxes the yarn into realistic shape while preserving global shape of the garment and avoiding "yarn pull-through," thereby producing valid yarn geometry suitable for dynamic simulation. Using our system, we can efficiently create yarn-level models of knitted clothing with a rich variety of patterns that would be completely impractical to model using traditional techniques. We show a variety of example knitting patterns and full-scale garments produced using our system.

Skip Supplemental Material Section

Supplemental Material

tp111_12.mp4

References

  1. Akleman, E., Chen, J., Xing, Q., and Gross, J. L. 2009. Cyclic plain-weaving on polygonal mesh surfaces with graph rotation systems. ACM T. Graph. (SIGGRAPH'09) 28, 3, 78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Allen, P., Barr, T., and Okey, S. 2008. Knitting For Dummies. Wiley Publishing.Google ScholarGoogle Scholar
  3. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. ACM SIGGRAPH'98, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. 2007. TRACKS: Toward Directable Thin Shells. ACM T. Graph. (SIGGRAPH'07) 26, 3, 50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bridson, R., Fedkiw, R., and john Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM T. Graph. (SIGGRAPH'02), 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cabral, M., Lefebvre, S., Dachsbacher, C., and Drettakis, G. 2009. Structure-preserving reshape for textured architectural scenes. CG Forum (Eurographics) 28, 2, 469--480.Google ScholarGoogle ScholarCross RefCross Ref
  7. Carignan, M., Yang, Y., Thalmann, N. M., and Thalmann, D. 1992. Dressing animated synthetic actors with complex deformable clothes. ACM SIGGRAPH'92, 99--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Catmull, E., and Clark, J. 1978. Recursively generated b-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 6, 350--355.Google ScholarGoogle Scholar
  9. Choi, K., and Lo, T. 2003. An energy model of plain knitted fabric. Textile Research Jour. 73, 739--748.Google ScholarGoogle ScholarCross RefCross Ref
  10. Choi, K., and Lo, T. 2006. The shape and dimensions of plain knitted fabric: A fabric mechanical model. Textile Research Jour. 76, 10, 777--786.Google ScholarGoogle ScholarCross RefCross Ref
  11. Chu, L. 2005. A Framework for Extracting Cloth Descriptors from the Underlying Yarn Structure. PhD thesis, University of California, Berkeley.Google ScholarGoogle Scholar
  12. Decaudin, P., Julius, D., Wither, J., Boissieux, L., Sheffer, A., and Cani, M.-P. 2006. Virtual garments: A fully geometric approach for clothing design. CG Forum (Eurographics) 25, 3, 625--634.Google ScholarGoogle ScholarCross RefCross Ref
  13. Demiroz, A., and Dias, T. 2000. A study of the graphical representation of plain-knitted structures part I: Stitch model for the graphical representation of plain-knitted structures. Journal of the Textile Institute 91, 463--480.Google ScholarGoogle ScholarCross RefCross Ref
  14. Duhovic, M., and Bhattacharyya, D. 2006. Simulating the deformation mechanisms of knitted fabric composites. Composites Part A: Applied Science and Manufactur. 37, 11, 1897--1915.Google ScholarGoogle ScholarCross RefCross Ref
  15. Eberhardt, B., Meissner, M., and Strasser, W. 2000. Knit fabrics. In Cloth Modeling and Animation, D. House and D. Breen, Eds. A K Peters, ch. 5, 123--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Floater, M. S. 2003. Mean value coordinates. Computer Aided Geometric Design 20, 1, 19--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Göktepe, O., and Harlock, S. C. 2002. Three-dimensional computer modeling of warp knitted structures. Textile Research Jour. 72, 266--272.Google ScholarGoogle ScholarCross RefCross Ref
  18. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun, E. 2007. Efficient simulation of inextensible cloth. ACM T. Graph. (SIGGRAPH'07) 26, 3, 49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Grinspun, E., Hirani, A., Desbrun, M., and Schröder, P. 2003. Discrete shells. Symp. on Computer Animation, 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Heeger, D. J., and Bergen, J. R. 1995. Pyramid-based texture analysis/synthesis. In ACM SIGGRAPH'95, 229--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Igarashi, T., and Mitani, J. 2010. Apparent layer operations for the manipulation of deformable objects. ACM T. Graph. (SIGGRAPH'10) 29, 4, 110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Igarashi, Y., Igarashi, T., and Suzuki, H. 2008. Knitting a 3D Model. CG Forum (Eurographics) 27, 7, 1737--1743.Google ScholarGoogle ScholarCross RefCross Ref
  23. Igarashi, Y., Igarashi, T., and Suzuki, H. 2008. Knitty: 3D Modeling of Knitted Animals with a Production Assistant Interface. Eurographics 2008 Annex to Conf. Proc., 187--190.Google ScholarGoogle Scholar
  24. Kaldor, J. M., James, D. L., and Marschner, S. 2008. Simulating knitted cloth at the yarn level. ACM T. Graph. (SIGGRAPH'08) 27, 3, 65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kaldor, J. M., James, D. L., and Marschner, S. 2010. Efficient yarn-based cloth with adaptive contact linearization. ACM T. Graph. (SIGGRAPH'10) 29, 4, 105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kaldor, J. 2011. Simulating Yarn-Based Cloth. PhD thesis, Cornell University.Google ScholarGoogle Scholar
  27. Kurbak, A., and Alpyildiz, T. 2008. A geometrical model for the double lacoste knits. Textile Research Jour. 78, 3, 232--247.Google ScholarGoogle ScholarCross RefCross Ref
  28. Kurbak, A., and Soydan, A. S. 2009. Geometrical models for balanced rib knitted fabrics part III: 2x2, 3x3, 4x4, and 5x5 rib fabrics. Textile Research Jour. 79, 7, 618--625.Google ScholarGoogle ScholarCross RefCross Ref
  29. Kurbak, A. 2009. Geometrical models for balanced rib knitted fabrics part I: Conventionally knitted 1x1 rib fabrics. Textile Research Jour. 79, 5, 418--435.Google ScholarGoogle ScholarCross RefCross Ref
  30. Kwatra, V., Schödl, A., Essa, I., Turk, G., and Bobick, A. 2003. Graphcut textures: image and video synthesis using graph cuts. ACM T. Graph. (SIGGRAPH'03) 22, 3, 277--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Lai, Y.-K., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S.-M., and Gu, X. 2010. Metric-driven rosy field design and remeshing. IEEE Trans. on Viz. Comp. Graph. 16, 95--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Luo, Z. G., and Yuen, M. 2005. Reactive 2D/3D garment pattern design modification. CAD 37, 6, 623--630. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Matthews, A. 1984. Vogue Dictionary of Knitting Stitches. The Condé Nast Publications, Ltd., New York, NY.Google ScholarGoogle Scholar
  34. Meissner, M., and Eberhardt, B. 1998. The art of knitted fabrics, realistic physically based modelling of knitted patterns. CG Forum (Eurographics) 17, 3, 355--362.Google ScholarGoogle ScholarCross RefCross Ref
  35. Mori, Y., and Igarashi, T. 2007. Plushie: an interactive design system for plush toys. ACM T. Graph (SIGGRAPH'07) 26, 3, 45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Nocent, O., Nourrit, J.-M., and Remion, Y. 2001. Towards mechanical level of detail for knitwear simulation. In WSCG 2001 Conference Proceedings, 252--259.Google ScholarGoogle Scholar
  37. Renkens, W., and Kyosev, Y. 2011. Geometry modelling of warp knitted fabrics with 3D form. Textile Research Jour. 81, 4, 437--443.Google ScholarGoogle ScholarCross RefCross Ref
  38. Robson, C., Maharik, R., Sheffer, A., and Carr, N. 2011. Context-aware garment modeling from sketches. Computers and Graphics (SMI 2011) 35, 3, 604--613. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Turquin, E., Wither, J., Boissieux, L., Cani, M.-P., and Hughes, J. 2007. A sketch-based interface for clothing virtual characters. IEEE Comp. Graph. and Applications 27, 1, 72--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment editing and modeling. ACM T. Graph. (SIGGRAPH'11) 30, 4, 90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Volino, P., and Magnenat-Thalmann, N. 2000. Virtual Clothing: Theory and Practice. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  42. Volino, P., and Magnenat-Thalmann, N. 2005. Accurate garment prototyping and simulation. CAD & App. 2, 5, 645--654.Google ScholarGoogle Scholar
  43. Volino, P., Magnenat-Thalmann, N., and Faure, F. 2009. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM T. Graph. 28, 4, 105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Walker, B. G. 2001. A Fourth Treasury of Knitting Patterns. Schoolhouse Press, Pittsville, WI.Google ScholarGoogle Scholar
  45. Zhou, K., Huang, X., Wang, X., Tong, Y., Desbrun, M., Guo, B., and Shum, H.-Y. 2006. Mesh quilting for geometric texture synthesis. ACM T. Graph. (SIGGRAPH'06) 25, 3, 690. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Stitch meshes for modeling knitted clothing with yarn-level detail

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 4
        July 2012
        935 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2185520
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2012
        Published in tog Volume 31, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader